In: Math
The number of letters handled daily by a post office is normally distributed with a mean of 20,000 letters and a standard deviation of 100 letters. Find the percent of days on which the post office handles:
A.) more than 20,200 letters
B.) fewer than 19,900 letters
C.) Between 19,950 and 20,050 letters
D.) between 20,100 and 20,150 letters
Solution:
Given that,
mean = = 20,000 letters
standard deviation = = 100 letters
A ) P ( x > 20,200 )
= 1 - P (x < 12.4 )
= 1 - P ( x - / ) < ( 20,200 - 20,000 / 100)
= 1 - P ( z < 200 / 100 )
= 1 - P ( z < 2 )
Using z table
= 1 - 0.9772
= 0.0228
Probability = 0.0228
B ) P( x < 19900 )
P ( x - / ) < ( 19900 - 20000 / 100)
P ( z < - 100 / 100 )
P ( z < - 1 )
Using z table
= 0.1587
Probability = 0.1587
C ) P( 19950 < x < 20050 )
P ( 19950 - 20000 / 100) < ( x - / ) < ( 20050 - 20000 / 100)
P ( < - 50 /100z < 50 / 100 )
P (- 0.5 < z < 0.5 )
P ( z < 0.5 ) - P ( z < - 0.5 )
Using z table
= 0.6915 - 0.3085
= 0.3830
Probability = 0.3830
D ) P( 20100 < x < 20150 )
P ( 20100 - 20000 / 100) < ( x - / ) < ( 20150 - 20000 / 100)
P ( < 100 /100z < 150 / 100 )
P ( 1 < z < 1.5 )
P ( z < 1.5 ) - P ( z < 1 )
Using z table
= 0.9332 - 0.8413
= 0.0919
Probability = 0.0919