In: Computer Science
How do I sort a sequence A = 7,2,3,14,2,8,8,3,7,10
in O(nlogm) time where n is size of A and m is the number of distinct elements?
No code, just a good explanation will do
Use QuickSort Algorithm to get it sort in nlogm time.
QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the given array around the picked pivot. There are many different versions of quickSort that pick pivot in different ways.
The key process in quickSort is partition(). Target of partitions is, given an array and an element x of array as pivot, put x at its correct position in sorted array and put all smaller elements (smaller than x) before x, and put all greater elements (greater than x) after x. All this should be done in linear time.
arr[] = {10, 80, 30, 90, 40, 50, 70} Indexes: 0 1 2 3 4 5 6 low = 0, high = 6, pivot = arr[h] = 70 Initialize index of smaller element, i = -1 Traverse elements from j = low to high-1 j = 0 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j]) i = 0 arr[] = {10, 80, 30, 90, 40, 50, 70} // No change as i and j // are same j = 1 : Since arr[j] > pivot, do nothing // No change in i and arr[] j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j]) i = 1 arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and 30 j = 3 : Since arr[j] > pivot, do nothing // No change in i and arr[] j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j]) i = 2 arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40 Swapped j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j] i = 3 arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50 Swapped We come out of loop because j is now equal to high-1. Finally we place pivot at correct position by swapping arr[i+1] and arr[high] (or pivot) arr[] = {10, 30, 40, 50, 70, 90, 80} // 80 and 70 Swapped Now 70 is at its correct place. All elements smaller than 70 are before it and all elements greater than 70 are after it.