In: Finance
11. What is the internal rate of return for a project that
requires a current cash outlay of $14,975 and is expected to
generate cash inflows of $4,000 at the end of each of the next five
years?
A. 10.1%
B. 10.5%
C. 11.0%
D. 11.5%
E. 12.0%
12. What is the internal rate of return for a project that requires
a current cash outlay of $15,025 and is expected to generate cash
inflows of $5,000 at the end of each of the next four years?
A. 11.5%
B. 12.0%
C. 12.5%
D. 13.0%
E. 14.1%
13. What is the internal rate of return for a project that requires
a current cash outlay of $20,000 and is expected to generate cash
inflows of 18% of the project cost for the next eight years?
A. 8.90%
B. 9.25%
C. 9.43%
D. 9.67%
E. 9.95%
Solution 11:
B. 10.5% is the answer.
Explanation
NPV = -14,975 + 4000/(1+IRR) + 4000/(1+IRR)^2+4000/(1+IRR)^3+4000/(1+IRR)^4+4000/(1+IRR)^5
At Internal Rate of return (IRR), Net Present value (NPV) equals zero
0 = -14,975 + 4000/(1+IRR) + 4000/(1+IRR)^2+4000/(1+IRR)^3+4000/(1+IRR)^4+4000/(1+IRR)^5
14,975 = 4000/(1+IRR) + 4000/(1+IRR)^2+4000/(1+IRR)^3+4000/(1+IRR)^4+4000/(1+IRR)^5
At IRR = 10%, PV = 15,163.15
At IRR = 11%, PV = 14,783.59
Using Interpolation to find IRR
10% + (15,163.15 - 14,975)/(15,163.15 - 14,783.59) x (11% - 10%)
10% + 0.50%
10.5%
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
Solution 12:
C. 12.5% is the answer.
Explanation
NPV = -15,025+ 5000/(1+IRR) + 5000/(1+IRR)^2+5000/(1+IRR)^3+5000/(1+IRR)^4
At Internal Rate of return (IRR), Net Present value (NPV) equals zero
0 = -15,025 + 5000/(1+IRR) + 5000/(1+IRR)^2+5000/(1+IRR)^3+5000/(1+IRR)^4
15,025 = 5000/(1+IRR) + 5000/(1+IRR)^2+5000/(1+IRR)^3+5000/(1+IRR)^4
At IRR = 12%, PV = 15,186.75
At IRR = 13%, PV = 14,872.36
Using Interpolation to find IRR
12% + (15,185.75 - 15,025)/(15,186.75 - 14,872.36) x (13% - 12%)
12% + 0.50%
12.5%
---------------------------------------------------------------------------------------------------------------------------------------------------------------------
Solution 13:
A. 8.90% is the answer.
Explanation
Cash inflows = 18% of the project cost = 18%*20,000 = 3,600
NPV = -20000 + 3600/(1+IRR) + 3600/(1+IRR)^2+3600/(1+IRR)^3+3600/(1+IRR)^4+3600/(1+IRR)^5 + 3600/(1+IRR)^6 + 3600/(1+IRR)^7 + 3600/(1+IRR)^8
At Internal Rate of return (IRR), Net Present value (NPV) equals zero
0 = -20000 + 3600/(1+IRR) + 3600/(1+IRR)^2+3600/(1+IRR)^3+3600/(1+IRR)^4+3600/(1+IRR)^5 + 3600/(1+IRR)^6 + 3600/(1+IRR)^7 + 3600/(1+IRR)^8
20000 = 3600/(1+IRR) + 3600/(1+IRR)^2+3600/(1+IRR)^3+3600/(1+IRR)^4+3600/(1+IRR)^5 + 3600/(1+IRR)^6 + 3600/(1+IRR)^7 + 3600/(1+IRR)^8
At IRR = 8%, PV = 20,687.90
At IRR = 9%, PV = 19,925.35
Using Interpolation to find IRR
8% + (20,687.90- 20000)/(20,687.90 - 19925.35) x (9% - 8%)
8% + 0.90%
8.90%