In: Chemistry
Design a buffer that has a pH of 6.55 using one of the weak acid/conjugate base systems shown below.
Weak Acid Conjugate Base Ka pKa
HC2O4- C2O42- 6.4 × 10-5 4.19
H2PO4- HPO42- 6.2 × 10-8 7.21
HCO3- CO32- 4.8 × 10-11 10.32
Ans. #1. Part 1: Choice of weak acid- conjugate base pair: A buffer has maximum buffering capacity when pH of the buffer is closest to the pKa of weak acid.
Among the given options, the pKa of weak acid H2PO4- (7.21) is closest to the given buffer pH of 6.55. So, Phosphate buffer is the best choice to prepare this buffer.
Part 2: Preparation of Phosphate Buffer: One mole of each salt dissociates in water to yield 1 mol of their respective phosphate ions as follow-
Na2HPO4 ------> HPO42-(aq) + 2Na+(aq) - monoprotic form, Conju. Base
NaH2PO4 ------> H2PO4-(aq) + Na+(aq) - diprotic form, Acid
The diprotic phosphate H2PO2- acts as weak acid (pKa = 7.21). It can donate a proton to become HPO42- as follow-
H2PO4-(aq) <---------> HPO42-(aq) + H+
Now, using Henderson- Hasselbalch equation
pH = pKa + log ([A-] / [AH]) - equation 1
where, [A-] = [HPO42-] = [Na2HPO4] ;
[AH] = [H2PO4-] = [NaH2PO4]
Now,
Putting the values in equation 1-
6.55 = 7.21 + log ([Na2HPO4] / [NaH2PO4])
Or, 6.55 – 7.21 = log ([Na2HPO4] / [NaH2PO4])
Or, antilog (-0.66) = [Na2HPO4] / [NaH2PO4]
Or, [Na2HPO4] / [NaH2PO4] = 0.219
Or, [Na2HPO4] = 0.219 [NaH2PO4] - equation 2
#. Given, concentration of weak base, [Na2HPO4] = 1.0 M
Putting the value of [Na2HPO4] in equation 2-
M = 0.219 [NaH2PO4]
Or, [NaH2PO4] = 1.0 M / 0.219
Hence, [NaH2PO4] = 4.566 M
# Given, Total volume of buffer solution (culture medium) = 1.00 L
Now,
Mass of [Na2HPO4] required = (Molarity of Na2HPO4 x vol. of solution in L) x Molar mass
= (1.0 M x 1.00 L) x (141.958838 g/mol)
= 141.959 g
Mass of [NaH2PO4] required = (Molarity of KH2PO4 x vol. of solution in L) x Molar mass
= (04.566 M x 1.0 L) x (119.97701 g/mol)
= 547.815 g