In: Computer Science
The following is coded in C++. Please point out any changes or updates you make to the existing code with comments within the code.
Start with the provided code for the class linkedListType. Be sure to implement search, insert, and delete in support of an unordered list (that code is also provided).
Also, add a new function called insertLast that adds a new item to the END of the list, instead of to the beginning of the list. (Note: the link pointer of the last element of the list is NULL.)
Test your new function in main.
-----------------------------------------------------------------------------------
main.cpp (main driver):
#include #include "linkedList.h" using namespace std; int main() { linkedListType myLL; if(myLL.isEmptyList()){ cout<<"List is empty"< ----------------------------------------------------------------------
linkedList.h (header file containing declarations):
#ifndef H_LinkedListType #define H_LinkedListType #include #include using namespace std; //Definition of the node struct nodeType { int info; nodeType *link; }; //***************** class linkedListType **************** class linkedListType { public: const linkedListType& operator= (const linkedListType&); //Overload the assignment operator. void initializeList(); //Initialize the list to an empty state. //Postcondition: first = nullptr, last = nullptr, // count = 0; bool isEmptyList() const; //Function to determine whether the list is empty. //Postcondition: Returns true if the list is empty, // otherwise it returns false. void print() const; //Function to output the data contained in each node. //Postcondition: none int length() const; //Function to return the number of nodes in the list. //Postcondition: The value of count is returned. void destroyList(); //Function to delete all the nodes from the list. //Postcondition: first = nullptr, last = nullptr, // count = 0; int front() const; //Function to return the first element of the list. //Precondition: The list must exist and must not be // empty. //Postcondition: If the list is empty, the program // terminates; otherwise, the first // element of the list is returned. int back() const; //Function to return the last element of the list. //Precondition: The list must exist and must not be // empty. //Postcondition: If the list is empty, the program // terminates; otherwise, the last // element of the list is returned. bool search(const int& searchItem); //Function to determine whether searchItem is in the list. //Postcondition: Returns true if searchItem is in the // list, otherwise the value false is // returned. void insert(const int& newItem); //Function to insert newItem at the beginning of the list. //Postcondition: first points to the new list, newItem is // inserted at the beginning of the list, // last points to the last node in the list, // and count is incremented by 1. void deleteNode(const int& deleteItem); //Function to delete deleteItem from the list. //Postcondition: If found, the node containing // deleteItem is deleted from the list. // first points to the first node, last // points to the last node of the updated // list, and count is decremented by 1. linkedListType(); //Default constructor //Initializes the list to an empty state. //Postcondition: first = nullptr, last = nullptr, // count = 0; linkedListType(const linkedListType& otherList); //copy constructor ~linkedListType(); //Destructor //Deletes all the nodes from the list. //Postcondition: The list object is destroyed. protected: int count; //variable to store the number of //elements in the list nodeType *first; //pointer to the first node of the list nodeType *last; //pointer to the last node of the list private: void copyList(const linkedListType& otherList); //Function to make a copy of otherList. //Postcondition: A copy of otherList is created and // assigned to this list. }; #endif
------------------------------------------------------------------------------------------
linkedList.cpp (cpp file containing definitions):
#include "linkedList.h" bool linkedListType::isEmptyList() const { return (first == nullptr); } linkedListType::linkedListType() //default constructor { first = nullptr; last = nullptr; count = 0; } void linkedListType::destroyList() { nodeType *temp; //pointer to deallocate the memory //occupied by the node while (first != nullptr) //while there are nodes in { //the list temp = first; //set temp to the current node first = first->link; //advance first to the next node delete temp; //deallocate the memory occupied by temp } last = nullptr; //initialize last to nullptr; first has //already been set to nullptr by the while loop count = 0; } void linkedListType::initializeList() { destroyList(); //if the list has any nodes, delete them } void linkedListType::print() const { nodeType *current; //pointer to traverse the list current = first; //set current so that it points to //the first node while (current != nullptr) //while more data to print { cout << current->info << " "; current = current->link; } }//end print int linkedListType::length() const { return count; } //end length int linkedListType::front() const { assert(first != nullptr); return first->info; //return the info of the first node }//end front int linkedListType::back() const { assert(last != nullptr); return last->info; //return the info of the last node }//end back void linkedListType::copyList(const linkedListType& otherList) { nodeType *newNode; //pointer to create a node nodeType *current; //pointer to traverse the list if (first != nullptr) //if the list is nonempty, make it empty destroyList(); if (otherList.first == nullptr) //otherList is empty { first = nullptr; last = nullptr; count = 0; } else { current = otherList.first; //current points to the //list to be copied count = otherList.count; //copy the first node first = new nodeType; //create the node first->info = current->info; //copy the info first->link = nullptr; //set the link field of //the node to nullptr last = first; //make last point to the //first node current = current->link; //make current point to //the next node //copy the remaining list while (current != nullptr) { newNode = new nodeType; //create a node newNode->info = current->info; //copy the info newNode->link = nullptr; //set the link of //newNode to nullptr last->link = newNode; //attach newNode after last last = newNode; //make last point to //the actual last node current = current->link; //make current point //to the next node }//end while }//end else }//end copyList linkedListType::~linkedListType() //destructor { destroyList(); }//end destructor linkedListType::linkedListType(const linkedListType& otherList) { first = nullptr; copyList(otherList); }//end copy constructor //overload the assignment operator const linkedListType& linkedListType::operator=(const linkedListType& otherList) { if (this != &otherList) //avoid self-copy { copyList(otherList); }//end else return *this; } bool search(const int& searchItem){} void insert(const int& newItem){} void deleteNode(const int& deleteItem){}
---------------------------------------------------------------------------------------------------
Unordered list function implementation file:
bool linkedListType::search(const int& searchItem) { nodeType *current; //pointer to traverse the list bool found = false; current = first; //set current to point to the first //node in the list while (current != nullptr && !found) //search the list if (current->info == searchItem) //searchItem is found found = true; else current = current->link; //make current point to //the next node return found; }//end search void linkedListType::insert(const int& newItem) { nodeType *newNode; //pointer to create the new node newNode = new nodeType; //create the new node newNode->info = newItem; //store the new item in the node newNode->link = first; //insert newNode before first first = newNode; //make first point to the //actual first node count++; //increment count if (last == nullptr) //if the list was empty, newNode is also //the last node in the list last = newNode; }//end insert (at front) void linkedListType::deleteNode(const int& deleteItem) { nodeType *current; //pointer to traverse the list nodeType *trailCurrent; //pointer just before current bool found; if (first == nullptr) //Case 1; the list is empty. cout << "Cannot delete from an empty list." << endl; else { if (first->info == deleteItem) //Case 2 { current = first; first = first->link; count--; if (first == nullptr) //the list has only one node last = nullptr; delete current; } else //search the list for the node with the given info { found = false; trailCurrent = first; //set trailCurrent to point //to the first node current = first->link; //set current to point to //the second node while (current != nullptr && !found) { if (current->info != deleteItem) { trailCurrent = current; current = current-> link; } else found = true; }//end while if (found) //Case 3; if found, delete the node { trailCurrent->link = current->link; count--; if (last == current) //node to be deleted //was the last node last = trailCurrent; //update the value //of last delete current; //delete the node from the list } else cout << "The item to be deleted is not in " << "the list." << endl; }//end else }//end else }//end deleteNode
Please find the requested program below. Also including the screenshot of sample output and screenshot of code to understand the indentation.
Please provide your feedback
Thanks and Happy learning!
Add below function declaration in linkedList.h
void insertLast(const int& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new node if the list was empty,
// newItem is inserted at the end of the list,
// last points to the last node(newly inserted node) in the list,
// and count is incremented by 1.
Add below code in linkedList.cpp
void linkedListType::insertLast(const int& newItem)
{
nodeType *newNode; //pointer to create the new node
newNode = new nodeType; //create the new node
newNode->info = newItem; //store the new item in the node
newNode->link = nullptr; //insert newNode to teh end of the list
//if the list was empty, newNode is also
//the first node in the list
if (last == nullptr)
{
first = newNode;
}
else
{
last->link = newNode;
}
//Now the new node becomes the last node
last = newNode;
//increment count
count++;
}//end insert (at end)
Main function used to test the above code is as follows
int main()
{
linkedListType myLL;
if (myLL.isEmptyList()){
cout << "List is empty" << std::endl;
}
myLL.insert(10);
myLL.insert(5);
myLL.insert(20);
myLL.insert(13);
myLL.print();
myLL.insertLast(15);
myLL.insertLast(16);
myLL.insertLast(17);
std::cout << std::endl;
myLL.print();
return 0;
}