Question

In: Civil Engineering

Question 1 Two catalysts are being analysed to determine how they affect the mean yield of...

Question 1

Two catalysts are being analysed to determine how they affect the mean yield of a chemical process. Specifically, catalyst 1 is currently used; but catalyst 2 is acceptable. Since catalyst 2 is cheaper, it should be adopted if it does not change the process yield. A test is run in the pilot plant and the results are shown as follows:


Catalyst Yield Data Observation Number 1 2 3 4 5 6 7 8 Catalyst 1 91.5 94.18 92.18 95.39 91.79 89.07 94.72 89.21
Catalyst 2 89.19 90.95 90.46 93.21 97.19 97.04 91.07 92.75


Is there any difference in the mean yields at 5% significance level assuming equal variances? [20]

Solutions

Expert Solution

This problem is the Classic model in probability and hypothesis testing,

Let's proceed

So there is no significant difference in the mean yields from my analysis

Hope this helps

All the best :)


Related Solutions

Two catalysts are being analyzed to determine how they affect the mean yield of a chemical...
Two catalysts are being analyzed to determine how they affect the mean yield of a chemical process. Specifically, catalyst 1 is currently in use, but catalyst 2 is acceptable. Since catalyst 2 is cheaper, it should be adopted, providing it does not change the process yield. An experiment is run in the pilot plant and results in the data shown. (a) Is there any difference between the mean yields? Use α = 0.05 and assume equal variances. (b) Find the...
Two catalysts are being analyzed to determine how they affect the mean yield of a chemical...
Two catalysts are being analyzed to determine how they affect the mean yield of a chemical process. Specifically, catalyst 1 is currently in use, but catalyst 2 is acceptable. Since catalyst 2 is cheaper, it should be adopted, providing it does not change the process yield. An experiment is run in the pilot plant and results in the data shown.(a) Is there any difference between the mean yields? Use α = 0.05 and assume equal variances. (b) Find the 100(1-α)...
Two catalysts are being analyzed to determine how they affect the mean yield of a chemical...
Two catalysts are being analyzed to determine how they affect the mean yield of a chemical process. Specifically, catalyst 1 is currently in use, but catalyst 2 is acceptable. Since catalyst 2 is cheaper, it should be adopted, providing it does not change the process yield. An experiment is run in the pilot plant and results in the data shown. (a) Is there any difference between the mean yields? Use α = 0.05 and assume equal variances. (b) Find the...
Two catalysts are being analyzed to determine how they affect the mean yield of a chemical...
Two catalysts are being analyzed to determine how they affect the mean yield of a chemical process. Specifically, catalyst 1 is currently used. Because catalyst 2 is cheaper, it should be adopted, if it does not change the process yield. A test is run in the pilot plant and results in the data shown in the Table below. Both populations are assumed normal. a) Assuming equal variances, using a hypothesis test at 5% alpha level, show if there is any...
Two catalysts are being analyzed to determine how they affect the mean yield of a chemical...
Two catalysts are being analyzed to determine how they affect the mean yield of a chemical process. Specifically, catalyst 1 is currently used. Because catalyst 2 is cheaper, it should be adopted, if it does not change the process yield. A test is run in the pilot plant and results in the data shown in the Table below. Both populations are assumed normal. Observation # Catalyst 1 Catalyst 1 1 91.5 89.19 2 94.18 90.95 3 92.18 90.46 4 95.39...
Yield of Chemical Process Two catalysts were analyzed to determine how they affect the mean yield...
Yield of Chemical Process Two catalysts were analyzed to determine how they affect the mean yield of chemical process. Specifically, catalyst 1 is currently used; but catalyst 2 is acceptable. Because catalyst 2 is cheaper, it should be adopted, if it does not change the process yield. Two tests were run in the pilot plant. Eight samples of each type of catalyst were randomly and independently selected from the pilot plant, and the chemical process yield were recorded. The data...
Two catalysts in a batch chemical process, are being compared for their effect on the output...
Two catalysts in a batch chemical process, are being compared for their effect on the output of the process reaction. A sample of 12 batches was prepared using catalyst 1, and a sample of 10 batches was prepared using catalyst 2. The 12 batches for which catalyst 1 was used in the reaction gave an average yield of 85 with a sample standard deviation of 4, and the 10 batches for which catalyst 2 was used gave an average yield...
Two catalysts in a batch chemical process, are being considered for their effect on the output...
Two catalysts in a batch chemical process, are being considered for their effect on the output of a process reaction. Based on literature, data with different samples with catalyst 1 were found to result to the following yield: 78.53 78.17 81.05 81.77 78.13 81.24 81.84 79.63 78.59 79.74 79.84 On the other hand, you found the following for the yield using catalyst 2: 82.05 81.57 81.71 81.29 81.79 81.47 81.75 81.50 81.75 If you can assume that the distribution characterizing...
Two catalysts are being considered for a chemical process. Sixteen batches were completed using Catalyst 1,...
Two catalysts are being considered for a chemical process. Sixteen batches were completed using Catalyst 1, providing an average yield of ?̅1 = 84 and a standard deviation of ?1 = 1.87. Thirteen batches were run with Catalyst 2, and a mean yield of ?̅2 = 89 was found, along with ?2 = 1.48. Assume the underlying yield data are Normally distributed. (a) Is it believable that the variances of the two populations differ? Use the appropriate hypothesis test with...
Two catalysts are being considered for a chemical process. Sixteen batches were completed using Catalyst 1,...
Two catalysts are being considered for a chemical process. Sixteen batches were completed using Catalyst 1, providing an average yield of ?̅1 = 84 and a standard deviation of ?1 = 1.87. Thirteen batches were run with Catalyst 2, and a mean yield of ?̅2 = 89 was found, along with ?2 = 1.48. Assume the underlying yield data are Normally distributed. (a) Is it believable that the variances of the two populations differ? Use the appropriate hypothesis test with...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT