In: Economics
Given the following income data from a representative sample of a population in a certain year, what is its Gini index?
Person | Income | Person | Income | Person | Income |
1 | 30 | 6 | 400 | 11 | 1700 |
2 | 70 | 7 | 550 | 12 | 2000 |
3 | 140 | 8 | 1100 | 13 | 3000 |
4 | 210 | 9 | 1200 | 14 | 5000 |
5 | 300 | 10 | 1450 | 15 | 8000 |
A. |
0.34 |
|
B. |
0.44 |
|
C. |
0.57 |
|
D. |
0.60 |
|
E. |
0.76 |
Person | Income | % of population | % of income | cummulative % of income | area under the Lorenz curve (i.e., B) |
1 | 30 | 0.067 | 0.001 | 0.001 | |
2 | 70 | 0.133 | 0.003 | 0.004 | 0.00016 |
3 | 140 | 0.200 | 0.006 | 0.009 | 0.00044 |
4 | 210 | 0.267 | 0.008 | 0.018 | 0.000906 |
5 | 300 | 0.333 | 0.012 | 0.030 | 0.001585 |
6 | 400 | 0.400 | 0.016 | 0.046 | 0.002518 |
7 | 550 | 0.467 | 0.022 | 0.067 | 0.003783 |
8 | 1100 | 0.533 | 0.044 | 0.111 | 0.005981 |
9 | 1200 | 0.600 | 0.048 | 0.159 | 0.009045 |
10 | 1450 | 0.667 | 0.058 | 0.217 | 0.012575 |
11 | 1700 | 0.733 | 0.068 | 0.284 | 0.01677 |
12 | 2000 | 0.800 | 0.080 | 0.364 | 0.021699 |
13 | 3000 | 0.867 | 0.119 | 0.483 | 0.028359 |
14 | 5000 | 0.933 | 0.199 | 0.682 | 0.039015 |
15 | 8000 | 1.000 | 0.318 | 1.000 | 0.056331 |
Sum= 25150 | Sum = 0.199167 |
Area of A = 0.5 - Area of B
Area of A = 0.5 - 0.199167
Area of A = 0.30
Gini Coefiicient = (Area of A / 0.5)
Gini Coefficient = 0.60
Answer: Option (D).