Question

In: Chemistry

In which direction will the net reaction proceed.X(g) + Y(g) <==> Z(g) .. Kp = 1.00...

In which direction will the net reaction proceed.
X(g) + Y(g) <==> Z(g) .. Kp = 1.00 at 300k
for each of these sets of initial conditions?


1) [X] = [Y] = [Z] = 1.0 M
a] net reaction goes to the left [this one?]
b] net reaction goes to the right
c] reaction is at equilibrium

2. Px = Pz = 1.0 atm, Py = 0.50 atm

a] net reaction goes to the left
b] net reaction goes to the right
c] reaction is at equilibrium

Solutions

Expert Solution

Concepts and reason

Equilibrium constant is the ratio between the concentration of products to the concentration of reactants. The equilibrium constant is expressed asK{\rm{K}}. If the value of K{\rm{K}}is more than 1, the equilibrium favors products and if the value of K{\rm{K}}is less than 1, the equilibrium favors reactants.

Fundamentals

For a simple equilibrium reaction,

The equilibrium constant with respect to molar concentration is represented asKc{\rm{Kc}}.

Kc=[C]c[D]d[A]a[B]b{\rm{Kc}}\,\,{\rm{ = }}\,\,\frac{{{{\left[ {\rm{C}} \right]}^{\rm{c}}}{{\left[ {\rm{D}} \right]}^{\rm{d}}}}}{{{{\left[ {\rm{A}} \right]}^{\rm{a}}}{{\left[ {\rm{B}} \right]}^{\rm{b}}}}}

The equilibrium constant in terms of partial pressure can be represented asKp{{\rm{K}}_{\rm{p}}}.

KP=(C)c(D)d(A)a(B)b{{\rm{K}}_{\rm{P}}}\,{\rm{ = }}\,\,\frac{{{{\left( {\rm{C}} \right)}^{\rm{c}}}{{\left( {\rm{D}} \right)}^{\rm{d}}}}}{{{{\left( {\rm{A}} \right)}^{\rm{a}}}{{\left( {\rm{B}} \right)}^{\rm{b}}}}}

The relation between both Kc{\rm{Kc}}and Kp{{\rm{K}}_{\rm{p}}}is:

Kp=Kc(RT)ΔnKp=equilibriumconstantintermsofpartialpressure.Kc=equilibriumconstantintermsofmolarconcentration.R=gasconstant(0.0821L.atmmol.K)T=temperatureΔn=numberofmolesofproductnumberofmolesofreactant.\begin{array}{l}\\{{\rm{K}}_{\rm{p}}}\,{\rm{ = }}\,{{\rm{K}}_{\rm{c}}}{\left( {{\rm{RT}}} \right)^{{\rm{\Delta n}}}}\\\\{{\rm{K}}_{\rm{p}}}\,{\rm{ = }}\,\,{\rm{equilibrium}}\,\,{\rm{constant}}\,\,{\rm{in}}\,{\rm{terms}}\,\,{\rm{of}}\,{\rm{partial}}\,{\rm{pressure}}{\rm{.}}\\\\{{\rm{K}}_{\rm{c}}}\,{\rm{ = }}\,\,{\rm{equilibrium}}\,\,{\rm{constant}}\,\,{\rm{in}}\,{\rm{terms}}\,\,{\rm{of}}\,{\rm{molar}}\,\,{\rm{concentration}}{\rm{.}}\\\\{\rm{R}}\,\,\,{\rm{ = }}\,\,{\rm{gas}}\,\,{\rm{constant}}\,\,\left( {{\rm{0}}{\rm{.0821}}\frac{{{\rm{L}}{\rm{.atm}}}}{{{\rm{mol}}{\rm{.K}}}}} \right)\\\\{\rm{T}}\,\,\,{\rm{ = }}\,\,{\rm{temperature}}\\\\{\rm{\Delta n = }}\,\,{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,{\rm{product}}\,{\rm{ - }}\,{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,{\rm{reactant}}{\rm{.}}\\\end{array}

The reaction quotient is represented as Q{\rm{Q}}which is used to predict the respective amount of products and reactants. The reaction quotient Q{\rm{Q}}of a reaction is measured at a specific point.

Relationship between K and Q:

The reaction at equilibrium is measured byK{\rm{K}}. The reaction that is not present in equilibrium is represented asQ{\rm{Q}}.

In terms of molar concentration, Q{\rm{Q}}is represented as,

Qc=[C]c[D]d[A]a[B]b{{\rm{Q}}_{\rm{c}}}\,\,{\rm{ = }}\,\,\frac{{{{\left[ {\rm{C}} \right]}^{\rm{c}}}{{\left[ {\rm{D}} \right]}^{\rm{d}}}}}{{{{\left[ {\rm{A}} \right]}^{\rm{a}}}{{\left[ {\rm{B}} \right]}^{\rm{b}}}}}

In terms of partial pressure, Q{\rm{Q}}is represented as,

QP=(C)c(D)d(A)a(B)b{{\rm{Q}}_{\rm{P}}}\,{\rm{ = }}\,\,\frac{{{{\left( {\rm{C}} \right)}^{\rm{c}}}{{\left( {\rm{D}} \right)}^{\rm{d}}}}}{{{{\left( {\rm{A}} \right)}^{\rm{a}}}{{\left( {\rm{B}} \right)}^{\rm{b}}}}}

IfQ>K{\rm{Q}}\,\,{\rm{ > }}\,\,{\rm{K}}, the reaction is reactant favored.

IfQ>K{\rm{Q}}\,\,{\rm{ > }}\,\,{\rm{K}}, the reaction favors products.

If Q=K{\rm{Q}}\,\, = \,\,{\rm{K}}, the reaction is at equilibrium.

Δn=molesofproductsmolesofreactantsΔn=1(1+1)Δn=1CalculationfordeterminingKc:Kp=Kc(RT)Δn1.00=Kc(0.0821L.atmmol.K×300K)1\begin{array}{l}\\{\rm{\Delta n}}\,\,{\rm{ = }}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{products}}\,\,{\rm{ - }}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{reactants}}\\\\{\rm{\Delta n}}\,\,{\rm{ = }}\,\,{\rm{1 - (1 + 1)}}\\\\{\rm{\Delta n}}\,\,{\rm{ = }}\,\,{\rm{ - 1}}\\\\{\rm{Calculation}}\,\,{\rm{for}}\,\,{\rm{determining}}\,\,{\rm{Kc:}}\\\\\,\,\,\,{{\rm{K}}_{\rm{p}}}{\rm{ = }}\,\,{{\rm{K}}_{\rm{c}}}{{\rm{(RT)}}^{{\rm{\Delta n}}}}\\\\{\rm{1}}{\rm{.00}}\,\,\,{\rm{ = }}\,\,{{\rm{K}}_{\rm{c}}}\,{\left( {{\rm{0}}{\rm{.0821}}\,\frac{{{\rm{L}}{\rm{.atm}}}}{{{\rm{mol}}{\rm{.K}}}}\,\,{\rm{ \times }}\,\,{\rm{300K}}} \right)^{{\rm{ - 1}}}}\\\end{array}

1.00=Kc(0.0821L.atmmol.K×300K)Kc=1.00(0.0821L.atmmol.K×300K)Kc=24.63\begin{array}{l}\\{\rm{1}}{\rm{.00}}\,\,\,{\rm{ = }}\,\,\frac{{{{\rm{K}}_{\rm{c}}}}}{{{{\left( {{\rm{0}}{\rm{.0821}}\,\frac{{{\rm{L}}{\rm{.atm}}}}{{{\rm{mol}}{\rm{.K}}}}\,\,{\rm{ \times }}\,\,{\rm{300K}}} \right)}^{}}}}\\\\\,\,\,\,{{\rm{K}}_{\rm{c}}}\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.00}}\,\,\left( {{\rm{0}}{\rm{.0821}}\,\frac{{{\rm{L}}{\rm{.atm}}}}{{{\rm{mol}}{\rm{.K}}}}\,\,{\rm{ \times }}\,\,{\rm{300K}}} \right)\\\\\,\,\,{{\rm{K}}_{\rm{c}}}\,\,{\rm{ = }}\,\,\,{\rm{24}}{\rm{.63}}\\\end{array}

Part 1

Given:[X]=1.0M[Y]=1.0M[Z]=1.0M\begin{array}{l}\\{\rm{Given:}}\\\\\left[ {\rm{X}} \right]\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.0M}}\\\\\left[ {\rm{Y}} \right]\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.0M}}\\\\\,\left[ {\rm{Z}} \right]\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.0M}}\\\end{array}

Calculation:Qc=[Z][X][Y]=11×1Qc=1\begin{array}{l}\\{\rm{Calculation:}}\\\\{{\rm{Q}}_{\rm{c}}}\,\,{\rm{ = }}\,\,\frac{{\left[ {\rm{Z}} \right]}}{{\left[ {\rm{X}} \right]\left[ {\rm{Y}} \right]}}\\\\\,\,\,\,\,\,\,{\rm{ = }}\,\,\,\frac{{\rm{1}}}{{{\rm{1}}\,\,{\rm{ \times }}\,\,{\rm{1}}}}\\\\{{\rm{Q}}_{\rm{c}}}\,\,{\rm{ = }}\,\,{\rm{1}}\\\end{array}

From the Step 1 calculation, the value of Kcis24.63{\rm{Kc}}\,\,{\rm{is}}\,\,{\rm{24}}{\rm{.63}}. Therefore, Qc{{\rm{Q}}_{\rm{c}}}is less thanKc{\rm{Kc}}.

a)The net reaction will not go to the left because the value of Qc{{\rm{Q}}_{\rm{c}}}is not greater thanKc{\rm{Kc}}.

b)The reaction is not in equilibrium because the value of Qc{{\rm{Q}}_{\rm{c}}}is not equal toKc{\rm{Kc}}.

c)The reaction will go to the right because the value of Qc{{\rm{Q}}_{\rm{c}}}is less thanKc{\rm{Kc}}.

Part 2

Given:PX=1.0atmPZ=1.0atmPY=0.50atm\begin{array}{l}\\{\rm{Given:}}\\\\{{\rm{P}}_{\rm{X}}}{\rm{ = }}\,\,{\rm{1}}{\rm{.0}}\,{\rm{atm}}\\\\{{\rm{P}}_{\rm{Z}}}\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.0}}\,{\rm{atm}}\\\\{{\rm{P}}_{\rm{Y}}}\,\,{\rm{ = }}\,\,{\rm{0}}{\rm{.50}}\,{\rm{atm}}\\\end{array}

CalculationofQp:Qp=PZPXPY=1.0atm1.0atm×0.5atmQp=2.0\begin{array}{l}\\{\rm{Calculation}}\,\,{\rm{of}}\,\,{{\rm{Q}}_{\rm{p}}}{\rm{:}}\\\\{{\rm{Q}}_{\rm{p}}}\,{\rm{ = }}\,\,\frac{{{{\rm{P}}_{\rm{Z}}}}}{{{{\rm{P}}_{\rm{X}}}\,{{\rm{P}}_{\rm{Y}}}}}\,\,\\\\\,\,\,\,\,\,\,{\rm{ = }}\,\,\frac{{{\rm{1}}{\rm{.0}}\,{\rm{atm}}\,}}{{{\rm{1}}{\rm{.0}}\,{\rm{atm}}\,{\rm{ \times }}\,{\rm{0}}{\rm{.5}}\,{\rm{atm}}\,}}\\\\{{\rm{Q}}_{\rm{p}}}\,{\rm{ = }}\,\,\,{\rm{2}}{\rm{.0}}\\\end{array}

From the given data, the value of Kpis1.00{\rm{Kp}}\,\,{\rm{is}}\,\,{\rm{1}}{\rm{.00}}. Therefore, Qp{{\rm{Q}}_{\rm{p}}}is greater thanKp{\rm{Kp}}.

c)The net reaction will not go to the right because the value of Qp{{\rm{Q}}_{\rm{p}}}is not less thanKp{\rm{Kp}}.

d)The reaction is not in equilibrium because the value of Qp{{\rm{Q}}_{\rm{p}}}is not less thanKp{\rm{Kp}}.

a)The reaction will go to the left because the value of Qp{{\rm{Q}}_{\rm{p}}}is greater thanKp{\rm{Kp}}.

Ans: Part 1

b)Net reaction goes to the right.

Part 2

a)Net reaction goes to the left.


Related Solutions

Find the temperature in ºC at which Kp = 43.7 for the reaction H2(g) + I2(g)...
Find the temperature in ºC at which Kp = 43.7 for the reaction H2(g) + I2(g) ⇌ 2 HI(g). Use ∆Hºrxn and ∆Sºrxn to calculate and assume that they are independent of temperature. Use the thermodynamic data in the appendix of your textbook; I have provided the needed appendix on BlackBoard for your convenience. Report your answer to zero places past the decimal.
The following reaction N2 (g) + O2 (g) ⇔ 2 NO (g) has a KP =...
The following reaction N2 (g) + O2 (g) ⇔ 2 NO (g) has a KP = 0.032 at a particular temperature. At that temperature, a vessel is filled with 0.040 atm of N2 (g), 0.040 atm of O2 (g) and 0.043 atm of NO (g). What is the pressure of NO (g) at equilibrium?
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and...
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and ∇h∇h are conservative?
A.) For which reaction will Kp = Kc? 2 H2O(l) ↔ 2 H2(g) + O2(g) 2...
A.) For which reaction will Kp = Kc? 2 H2O(l) ↔ 2 H2(g) + O2(g) 2 HgO(s) ↔ Hg(l) + O2(g) S(s) + O2(g) ↔ SO2(g) H2CO3(s) ↔ H2O(l) + CO2(g) CaCO3(s) ↔ CaO(s) + CO2(g) B.) How does an increase in the pressure within the container by the addition of the inert gas E affect the amount of C present at equilibrium for the following reaction? A(g) + 3 B(g) ↔ 2 C(g) + D(g)           ΔH° = -65 kJ...
The reaction CH2Cl2 (g) --> CH4 (g) + CCl4 (g) has Kp = 1.33 at 400K....
The reaction CH2Cl2 (g) --> CH4 (g) + CCl4 (g) has Kp = 1.33 at 400K. A 5.00L reaction vessel is evacuated, and 15.00 g of CH2Cl2 (l) is added to the flask. The CH2Cl2 (l) rapidly vaporizes and the reaction starts. a. What will be all of the partial pressures of the gases when equilibrium is reached? b. Sketch a graph showing the initial concentration of each gas and how they change as the mixture approaches equilibrium. Set-up your...
At a particular temperature Kp = 0.041 for the reaction N2(g) + O2(g) ⇄ 2NO(g) What...
At a particular temperature Kp = 0.041 for the reaction N2(g) + O2(g) ⇄ 2NO(g) What is the equilibrium partial pressure of NO if a flask initially contains 0.12 atm of all three gases? Report the pressure of NO in atm rounded to the nearest hundredth of an atm.
Consider this reaction: 2O3(g)<--->3O2(g) ΔHrxn=-285.4 kj/mol. In which direction will the reaction shift when the following...
Consider this reaction: 2O3(g)<--->3O2(g) ΔHrxn=-285.4 kj/mol. In which direction will the reaction shift when the following stresses are combined? a.Remove ozone from the system b.Add Ar c.Decrease temperature d.Add catalyst
Consider the following reaction: I2(g)+Cl2(g)⇌2ICl(g) Kp= 81.9 at 25 ∘C. Calculate ΔGrxn for the reaction at...
Consider the following reaction: I2(g)+Cl2(g)⇌2ICl(g) Kp= 81.9 at 25 ∘C. Calculate ΔGrxn for the reaction at 25 ∘C under each of the following conditions. PICl= 2.65 atm ; PI2= 0.325 atm ; PCl2= 0.212 atm .
PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138....
PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138. Calculate the partial pressure of all species at equilibrium for each of the following original mixtures: a) 1.36 atm of CO2 and 1.36 atm of H2. b) 0.87 atm of CO2, 0.87 atm of H2 and 0.87 atm of H2O(g). c) 0.64 atm of H2O and 0.64 atm of CO.
A. For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.140 at 1684 ∘C . What is Kp for...
A. For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.140 at 1684 ∘C . What is Kp for the reaction at this temperature? Express your answer numerically. B.For the reaction N2(g)+3H2(g)⇌2NH3(g) Kp = 4.35×10−3 at 334 ∘C . What is K for the reaction at this temperature?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT