In: Statistics and Probability
Calculate how many barrels of oil to refine, for the 15th year, into gasoline. Use the following data and create a forecast model that will enable you to solve the problem, and then solve.
Given:
Period: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Demand: 1500, 2100, 1900, 2250, 2200, 3000, 2675, 3327, 3619, 3550
Result:
Calculate how many barrels of oil to refine, for the 15th year, into gasoline. Use the following data and create a forecast model that will enable you to solve the problem, and then solve.
Given:
Period: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Demand: 1500, 2100, 1900, 2250, 2200, 3000, 2675, 3327, 3619, 3550
Regression Analysis |
||||||
r² |
0.913 |
n |
10 |
|||
r |
0.956 |
k |
1 |
|||
Std. Error |
229.824 |
Dep. Var. |
Demand |
|||
ANOVA table |
||||||
Source |
SS |
df |
MS |
F |
p-value |
|
Regression |
4,443,496.5121 |
1 |
4,443,496.5121 |
84.13 |
1.61E-05 |
|
Residual |
422,554.3879 |
8 |
52,819.2985 |
|||
Total |
4,866,050.9000 |
9 |
||||
Regression output |
confidence interval |
|||||
variables |
coefficients |
std. error |
t (df=8) |
p-value |
95% lower |
95% upper |
Intercept |
1,335.6667 |
157.0000 |
8.507 |
2.80E-05 |
973.6240 |
1,697.7094 |
period |
232.0788 |
25.3028 |
9.172 |
1.61E-05 |
173.7303 |
290.4273 |
Predicted values for: Demand |
||||||
95% Confidence Interval |
95% Prediction Interval |
|||||
period |
Predicted |
lower |
upper |
lower |
upper |
Leverage |
15 |
4,816.848 |
4,237.757 |
5,395.940 |
4,031.850 |
5,601.847 |
1.194 |
The forecast model is
Demand = 1,335.6667+232.0788*period.
When period =15,
The predicted demand =1,335.6667+232.0788*15
=4816.85