In: Statistics and Probability
| city | Lat | Temp | 
| Akron, OH | 41.05 | 27 | 
| Albany-Schenectady-Troy, NY | 42.4 | 23 | 
| Allentown, Bethlehem, PA-NJ | 40.35 | 29 | 
| Atlanta, GA | 33.45 | 45 | 
| Baltimore, MD | 39.2 | 35 | 
| Birmingham, AL | 33.31 | 45 | 
| Boston, MA | 42.15 | 30 | 
| Bridgeport-Milford, CT | 41.12 | 30 | 
| Buffalo, NY | 42.54 | 24 | 
| Canton, OH | 40.5 | 27 | 
| Chattanooga, TN-GA | 35.01 | 42 | 
| Chicago, IL | 41.49 | 26 | 
| Cincinnati, OH-KY-IN | 39.08 | 34 | 
| Cleveland, OH | 41.3 | 28 | 
| Columbus, OH | 40 | 31 | 
| Dallas, TX | 32.45 | 46 | 
| Dayton-Springfield, OH | 39.54 | 30 | 
| Denver, CO | 39.44 | 30 | 
| Detroit, MI | 42.06 | 27 | 
| Flint, MI | 43 | 24 | 
| Grand Rapids, MI | 43 | 24 | 
| Greensboro-Winston-Salem-High Point, NC | 36.04 | 40 | 
| Hartford, CT | 41.45 | 27 | 
| Houston, TX | 29.46 | 55 | 
| Indianapolis, IN | 39.45 | 29 | 
| Kansas City, MO | 39.05 | 31 | 
| Lancaster, PA | 40.05 | 32 | 
| Los Angeles, Long Beach, CA | 34 | 53 | 
| Louisville, KY-IN | 38.15 | 35 | 
| Memphis, TN-AR-MS | 35.07 | 42 | 
| Miami-Hialeah, FL | 25.45 | 67 | 
| Milwaukee, WI | 43.03 | 20 | 
| Minneapolis-St. Paul, MN-WI | 44.58 | 12 | 
| Nashville, TN | 36.1 | 40 | 
| New Haven-Meriden, CT | 41.2 | 30 | 
| New Orleans, LA | 30 | 54 | 
| New York, NY | 40.4 | 33 | 
| Philadelphia, PA-NJ | 40 | 32 | 
| Pittsburgh, PA | 40.26 | 29 | 
| Portland, OR | 45.31 | 38 | 
| Providence, RI | 41.5 | 29 | 
| Reading, PA | 40.2 | 33 | 
| Richmond-Petersburg, VA | 37.35 | 39 | 
| Rochester, NY | 43.15 | 25 | 
| St. Louis, MO-IL | 38.39 | 32 | 
| San Diego, CA | 32.43 | 55 | 
| San Francisco, CA | 37.45 | 48 | 
| San Jose, CA | 37.2 | 49 | 
| Seattle, WA | 47.36 | 40 | 
| Springfield, MA | 42.05 | 28 | 
| Syracuse, NY | 43.05 | 24 | 
| Toledo, OH | 41.4 | 26 | 
| Utica-Rome, NY | 43.05 | 23 | 
| Washington, DC-MD-VA | 38.5 | 37 | 
| Wichita, KS | 37.42 | 32 | 
| Wilmington, DE-NJ-MD | 39.45 | 33 | 
| Worcester, MA | 42.16 | 24 | 
| York, PA | 40 | 33 | 
| Youngstown-Warren, OH | 41.05 | 28 | 
You forgot to add question.
From your data, I think you want to fit regression equation for temp as dependent variable and lat as independent var.
If you want to do something else on this data please comment I will provide you answer accordingly.
Regression analysis: I used R software to solve this problem
R code:
> lat=scan("clipboard")
Read 59 items
> temp=scan("clipboard")
Read 59 items
> head(lat)
[1] 41.05 42.40 40.35 33.45 39.20 33.31
> head(temp)
[1] 27 23 29 45 35 45
> fit=lm(temp~lat)
> fit
Call:
lm(formula = temp ~ lat)
Coefficients:
(Intercept) lat
118.14 -2.15
> summary(fit)
Call:
lm(formula = temp ~ lat)
Residuals:
Min 1Q Median 3Q Max
-10.2978 -2.6353 -0.8719 0.3965 23.6789
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 118.139 6.743 17.52 <2e-16 ***
lat -2.150 0.171 -12.57 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.272 on 57 degrees of freedom
Multiple R-squared: 0.735, Adjusted R-squared: 0.7303
F-statistic: 158.1 on 1 and 57 DF, p-value: < 2.2e-16
Regression equation:
temp= 118.14 -2.15 lat
Adjusted R2= 0.7303 it means lat variable explain 73.03 % of variation in temp variable.