In: Statistics and Probability
city | Lat | Temp |
Akron, OH | 41.05 | 27 |
Albany-Schenectady-Troy, NY | 42.4 | 23 |
Allentown, Bethlehem, PA-NJ | 40.35 | 29 |
Atlanta, GA | 33.45 | 45 |
Baltimore, MD | 39.2 | 35 |
Birmingham, AL | 33.31 | 45 |
Boston, MA | 42.15 | 30 |
Bridgeport-Milford, CT | 41.12 | 30 |
Buffalo, NY | 42.54 | 24 |
Canton, OH | 40.5 | 27 |
Chattanooga, TN-GA | 35.01 | 42 |
Chicago, IL | 41.49 | 26 |
Cincinnati, OH-KY-IN | 39.08 | 34 |
Cleveland, OH | 41.3 | 28 |
Columbus, OH | 40 | 31 |
Dallas, TX | 32.45 | 46 |
Dayton-Springfield, OH | 39.54 | 30 |
Denver, CO | 39.44 | 30 |
Detroit, MI | 42.06 | 27 |
Flint, MI | 43 | 24 |
Grand Rapids, MI | 43 | 24 |
Greensboro-Winston-Salem-High Point, NC | 36.04 | 40 |
Hartford, CT | 41.45 | 27 |
Houston, TX | 29.46 | 55 |
Indianapolis, IN | 39.45 | 29 |
Kansas City, MO | 39.05 | 31 |
Lancaster, PA | 40.05 | 32 |
Los Angeles, Long Beach, CA | 34 | 53 |
Louisville, KY-IN | 38.15 | 35 |
Memphis, TN-AR-MS | 35.07 | 42 |
Miami-Hialeah, FL | 25.45 | 67 |
Milwaukee, WI | 43.03 | 20 |
Minneapolis-St. Paul, MN-WI | 44.58 | 12 |
Nashville, TN | 36.1 | 40 |
New Haven-Meriden, CT | 41.2 | 30 |
New Orleans, LA | 30 | 54 |
New York, NY | 40.4 | 33 |
Philadelphia, PA-NJ | 40 | 32 |
Pittsburgh, PA | 40.26 | 29 |
Portland, OR | 45.31 | 38 |
Providence, RI | 41.5 | 29 |
Reading, PA | 40.2 | 33 |
Richmond-Petersburg, VA | 37.35 | 39 |
Rochester, NY | 43.15 | 25 |
St. Louis, MO-IL | 38.39 | 32 |
San Diego, CA | 32.43 | 55 |
San Francisco, CA | 37.45 | 48 |
San Jose, CA | 37.2 | 49 |
Seattle, WA | 47.36 | 40 |
Springfield, MA | 42.05 | 28 |
Syracuse, NY | 43.05 | 24 |
Toledo, OH | 41.4 | 26 |
Utica-Rome, NY | 43.05 | 23 |
Washington, DC-MD-VA | 38.5 | 37 |
Wichita, KS | 37.42 | 32 |
Wilmington, DE-NJ-MD | 39.45 | 33 |
Worcester, MA | 42.16 | 24 |
York, PA | 40 | 33 |
Youngstown-Warren, OH | 41.05 | 28 |
You forgot to add question.
From your data, I think you want to fit regression equation for temp as dependent variable and lat as independent var.
If you want to do something else on this data please comment I will provide you answer accordingly.
Regression analysis: I used R software to solve this problem
R code:
> lat=scan("clipboard")
Read 59 items
> temp=scan("clipboard")
Read 59 items
> head(lat)
[1] 41.05 42.40 40.35 33.45 39.20 33.31
> head(temp)
[1] 27 23 29 45 35 45
> fit=lm(temp~lat)
> fit
Call:
lm(formula = temp ~ lat)
Coefficients:
(Intercept) lat
118.14 -2.15
> summary(fit)
Call:
lm(formula = temp ~ lat)
Residuals:
Min 1Q Median 3Q Max
-10.2978 -2.6353 -0.8719 0.3965 23.6789
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 118.139 6.743 17.52 <2e-16 ***
lat -2.150 0.171 -12.57 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.272 on 57 degrees of freedom
Multiple R-squared: 0.735, Adjusted R-squared: 0.7303
F-statistic: 158.1 on 1 and 57 DF, p-value: < 2.2e-16
Regression equation:
temp= 118.14 -2.15 lat
Adjusted R2= 0.7303 it means lat variable explain 73.03 % of variation in temp variable.