In: Statistics and Probability
The hypothesis is that the mean BMI of the students is lower than 24.
A. What is the right set of null and alternative hypotheses?
B. What's the p-value for this test to FOUR decimals ? (Note: check if the above test is one-sided or two-sided first)
C. At significance level 5%, we can reject the null hypothesis and claim that the mean BMI is less than 24 for the student population of interest. True or False?
Age | BMI |
35 | 24 |
23 | 20 |
23 | 18.2 |
24 | 22.3 |
. | . |
28 | . |
32 | 25.8 |
24 | 22.8 |
27 | 19.1 |
24 | . |
22 | 18.5 |
22 | 22 |
23 | 18.6 |
49 | . |
41 | 25 |
21 | 27.5 |
24 | 20.4 |
22 | 24 |
25 | 21 |
45 | 25.8 |
26 | 22 |
. | 27.2 |
32 | 21.1 |
. | 25 |
42 | 27 |
28 | 20 |
47 | 24.8 |
29 | 17 |
31 | 20.9 |
28 | 19.8 |
26 | . |
21 | 19.9 |
22 | 29 |
30 | 0.2 |
26 | 22.3 |
24 | 19.9 |
25 | . |
28 | 23 |
23 | 22 |
27 | 24.6 |
30 | 20.5 |
22 | . |
24 | 23 |
29 | 20.8 |
23 | 21.1 |
25 | 17.8 |
22 | 21.8 |
24 | 21.9 |
24 | 23.7 |
22 | 21.5 |
33 | 18.9 |
40 | . |
26 | 21.9 |
24 | . |
32 | 21 |
26 | 19.91 |
30 | 19 |
27 | 28 |
27 | 29 |
49 | . |
48 | 39.5 |
29 | 35 |
50 | 23.6 |
33 | 33 |
38 | 25.6 |
26 | . |
40 | 28 |
33 | 22.6 |
37 | . |
28 | 19 |
24 | 19.9 |
24 | 24.4 |
26 | 19.5 |
30 | 19.7 |
30 | 24.5 |
50 | 27.3 |
27 | 27.9 |
23 | 19 |
28 | 24.3 |
25 | 25.6 |
25 | 18.7 |
23 | . |
22 | 21.3 |
27 | 23.1 |
28 | 26.8 |
36 | 34.9 |
50 | 27.4 |
24 | 22 |
21 | 26.4 |
24 | 24.1 |
26 | 26.6 |
25 | 23 |
31 | 22.2 |
50 | 22.8 |
24 | 21.6 |
27 | 19.2 |
22 | . |
1 Tailed Z test, Single Mean
Given: = 24, = 23, s = 8.1, n = 83, = 0.05
(A) The Hypothesis:
H0: = 24: The mean BMI of the students is equal to 24.
Ha: < 24: The mean BMI of the students is lesser than 24..
This is a 1 tailed test (Left tailed)
______________________________________________________
(B) For the p value, we need to find the test statistic.
The Test Statistic: The test statistic is given by the equation:
Z observed = -1.125
The p Value: The p value(Left Tailed) for Z = -1.125, p value = 0.1303
______________________________________________________________
(C) The Decision Rule: If P value is < , Then Reject H0.
The Decision: Since P value (0.1303) is > (0.05) , We Fail Reject H0.
Therefore the statement: At the significance level 5%, we can reject the null hypothesis.....is FALSE.
_______________________________________________________
Calculation for the mean and standard deviation:
Mean = Sum of observation / Total Observations
Standard deviation = SQRT(Variance)
Variance = Sum Of Squares (SS) / n - 1, where
SS = SUM(X - Mean)2.
# | BMI | Mean | (X - Mean)2 |
1 | 24 | 23 | 1 |
2 | 20 | 23 | 9 |
3 | 18.2 | 23 | 23.04 |
4 | 22.3 | 23 | 0.49 |
5 | 25.8 | 23 | 7.84 |
6 | 22.8 | 23 | 0.04 |
7 | 19.1 | 23 | 15.21 |
8 | 18.5 | 23 | 20.25 |
9 | 22 | 23 | 1 |
10 | 18.6 | 23 | 19.36 |
11 | 25 | 23 | 4 |
12 | 27.5 | 23 | 20.25 |
13 | 20.4 | 23 | 6.76 |
14 | 24 | 23 | 1 |
15 | 21 | 23 | 4 |
16 | 25.8 | 23 | 7.84 |
17 | 22 | 23 | 1 |
18 | 27.2 | 23 | 17.64 |
19 | 21.1 | 23 | 3.61 |
20 | 25 | 23 | 4 |
21 | 27 | 23 | 16 |
22 | 20 | 23 | 9 |
23 | 24.8 | 23 | 3.24 |
24 | 17 | 23 | 36 |
25 | 20.9 | 23 | 4.41 |
26 | 19.8 | 23 | 10.24 |
27 | 19.9 | 23 | 9.61 |
28 | 29 | 23 | 36 |
29 | 0.2 | 23 | 519.84 |
30 | 22.3 | 23 | 0.49 |
31 | 19.9 | 23 | 9.61 |
32 | 23 | 23 | 0 |
33 | 22 | 23 | 1 |
34 | 24.6 | 23 | 2.56 |
35 | 20.5 | 23 | 6.25 |
36 | 23 | 23 | 0 |
37 | 20.8 | 23 | 4.84 |
38 | 21.1 | 23 | 3.61 |
39 | 17.8 | 23 | 27.04 |
40 | 21.8 | 23 | 1.44 |
41 | 21.9 | 23 | 1.21 |
42 | 23.7 | 23 | 0.49 |
43 | 21.5 | 23 | 2.25 |
44 | 18.9 | 23 | 16.81 |
45 | 21.9 | 23 | 1.21 |
46 | 21 | 23 | 4 |
47 | 19.91 | 23 | 9.5481 |
48 | 19 | 23 | 16 |
49 | 28 | 23 | 25 |
50 | 29 | 23 | 36 |
51 | 39.5 | 23 | 272.25 |
52 | 35 | 23 | 144 |
53 | 23.6 | 23 | 0.36 |
54 | 33 | 23 | 100 |
55 | 25.6 | 23 | 6.76 |
56 | 28 | 23 | 25 |
57 | 22.6 | 23 | 0.16 |
58 | 19 | 23 | 16 |
59 | 19.9 | 23 | 9.61 |
60 | 24.4 | 23 | 1.96 |
61 | 19.5 | 23 | 12.25 |
62 | 19.7 | 23 | 10.89 |
63 | 24.5 | 23 | 2.25 |
64 | 27.3 | 23 | 18.49 |
65 | 27.9 | 23 | 24.01 |
66 | 19 | 23 | 16 |
67 | 24.3 | 23 | 1.69 |
68 | 25.6 | 23 | 6.76 |
69 | 18.7 | 23 | 18.49 |
70 | 21.3 | 23 | 2.89 |
71 | 23.1 | 23 | 0.01 |
72 | 26.8 | 23 | 14.44 |
73 | 34.9 | 23 | 141.61 |
74 | 27.4 | 23 | 19.36 |
75 | 22 | 23 | 1 |
76 | 26.4 | 23 | 11.56 |
77 | 24.1 | 23 | 1.21 |
78 | 26.6 | 23 | 12.96 |
79 | 23 | 23 | 0 |
80 | 22.2 | 23 | 0.64 |
81 | 22.8 | 23 | 0.04 |
82 | 21.6 | 23 | 1.96 |
83 | 19.2 | 23 | 14.44 |
Total | 1909.01 | 1890.0781 |
n | 83 |
Sum | 1909.01 |
Average | 23.000 |
SS(Sum of squares) | 1890.0781 |
Variance = SS/n-1 | 23.050 |
Std Dev=Sqrt(Variance) | 4.80 |