Question

In: Advanced Math

Suppose that every row of M sums to k. Prove that M^n has constant row sums,...

Suppose that every row of M sums to k. Prove that M^n has constant row sums, and find that row sum.

Solutions

Expert Solution


Related Solutions

Let A be an n × n real symmetric matrix with its row and column sums...
Let A be an n × n real symmetric matrix with its row and column sums both equal to 0. Let λ1, . . . , λn be the eigenvalues of A, with λn = 0, and with corresponding eigenvectors v1,...,vn (these exist because A is real symmetric). Note that vn = (1, . . . , 1). Let A[i] be the result of deleting the ith row and column. Prove that detA[i] = (λ1···λn-1)/n. Thus, the number of spanning...
The spring of a toy gun has a force constant of k = 533 N/m and...
The spring of a toy gun has a force constant of k = 533 N/m and negligible mass. The spring is compressed the length of the gun barrel, 7.25 cm, and a 0.168-g ball is placed against the compressed spring. A constant frictional force of 5.45-N acts on the ball as it travels through the barrel. The ball leaves the barrel at the moment that it loses contact with the spring. The toy gun is ‘fired’ at a height of...
14N16O has a force constant, k, of 1550 N/m and a moment of inertia, I, of...
14N16O has a force constant, k, of 1550 N/m and a moment of inertia, I, of 1.642x10-46 kg m2. a. What is the wavenumber of the photon that will be absorbed during the v=2 to v=3 vibrational transition if it acts as a harmonic oscillator? b. What is the wavenumber of a photon that will be absorbed during the same transition in part (a) if the molecule behaves instead as an anharmonic oscillator with an anharmonicity constant of 0.007392? c....
A horizontal spring attached to a wall has a force constant of k = 770 N/m....
A horizontal spring attached to a wall has a force constant of k = 770 N/m. A block of mass m = 2.00 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 5.80 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.80 cm from equilibrium. J (b) Find the speed of the...
If graph G has n edges and k component and m vertices, so m ≥ n-k....
If graph G has n edges and k component and m vertices, so m ≥ n-k. Prove it!
If graph g has n vertices and k component and m edges, so m ≥ n-k....
If graph g has n vertices and k component and m edges, so m ≥ n-k. Prove it ! Thank you...
A spring with force constant k = 175 N/m is attached to the ground. On top...
A spring with force constant k = 175 N/m is attached to the ground. On top of the spring a 1.30 kg metal pan is attached. The combination could be used as a scale, but we are going to do something more interesting. We place a metal ball with mass 0.250 kg on the tray and then the tray is pushed down 0.150 m below its equilibrium point and released from rest (take this as t = 0). a) At...
1. prove s(n, k) = s(n − 1, k − 1) − (n − 1)s(n −...
1. prove s(n, k) = s(n − 1, k − 1) − (n − 1)s(n − 1, k). 2. What is ∑n k=0 s(n, k)?
Prove or disprove that 3|(n 3 − n) for every positive integer n.
Prove or disprove that 3|(n 3 − n) for every positive integer n.
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m . At t=0.2s, the displacement x=-0.3m, and the velocity v=-2.0m/s a) find the equation of displacement as a function of time b) sketch the displacement as a function of time for the first cycle starting t=0s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT