Question

In: Civil Engineering

Water at 70°F flows by gravity from a large reservoir at a high elevation to a...

Water at 70°F flows by gravity from a large reservoir at a high elevation to a smaller one through a 55-ft-long, 2-in-diameter cast iron piping system that includes four standard flanged elbows, a well-rounded entrance, a sharp-edged exit, and a fully open gate valve. Taking the free surface of the lower reservoir as the reference level, determine the elevation z1 of the higher reservoir for a flow rate of 10 ft3/min. The density and dynamic viscosity of water at 70°F are ρ = 62.30 lbm/ft3 and μ = 2.360 lbm/ft·h = 6.556 E–4 lbm/ft·s. The roughness of the cast iron pipe is ε = 0.00085 ft.

-The elevation z1 of the higher reservoir is ft.

Solutions

Expert Solution


Related Solutions

Water flows at a rate of 30 ft3/s from a reservoir with elevation 45 ft to...
Water flows at a rate of 30 ft3/s from a reservoir with elevation 45 ft to a lower one with elevation 0 ft through a pipe Of length 1800 ft with bends, elbows, entrances and exits contributing a total of minor losses Of ?K = 2.5. The pipe has a roughness e = 0.0005ft. -Determine the pipe diameter needed. -How important are minor losses? -Plot the EGL.
V5 What is the water elevation in reservoir B given the following: Elevation of reservoir A...
V5 What is the water elevation in reservoir B given the following: Elevation of reservoir A =2250m. The flow is 25m^3/sec. the temperature is 20C there are two pipes in series with the following characteristics D1 L1 D2 L2 2 m 1500m 1.6m 1000m There are gate valves at the exiting and entering the reservoirs There are two bends, 1 in each pipe size.There is is a globe valve on the downstream pipe. What is the elevation of Reservoir B?
Water will be pumped from a reservoir free surface of which is at an elevation of...
Water will be pumped from a reservoir free surface of which is at an elevation of “z1” to reservoir the free water surface of which is at “z2”. Both of the reservoirs’ free surfaces at atmospheric pressures.Design a piping system that transmits water from the lower reservoir to the upper reservoir at a volumetric flow rate of Q (m3 /h). Q = 200 (m3/h) Za = 10(m) Zb= 60 (m) Zc = 75 (m) L1=200 (m) L2=125 (m) "Pipe material...
Water will be pumped from a reservoir free surface of which is at an elevation of...
Water will be pumped from a reservoir free surface of which is at an elevation of “z1” to reservoir the free water surface of which is at “z2”. Both of the reservoirs’ free surfaces at atmospheric pressures.Design a piping system that transmits water from the lower reservoir to the upper reservoir at a volumetric flow rate of Q (m3 /h). Q = 200 (m3/h) Za = 10(m) Zb= 60 (m) Zc = 75 (m) L1=200 (m) L2=125 (m) "Pipe material...
A pump takes water at 60°F from a large reservoir and delivers it to the bottom...
A pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gpm. If the total loss of energy due to friction in the piping system...
The water surface of the reservoir is at an elevation of 326 m. A penstock with...
The water surface of the reservoir is at an elevation of 326 m. A penstock with a length of 6.4 km supplies water from the reservoir to a power plant at an elevation of 18m above sea level. If the turbine inlet pressure is 2.4 MPa, estimate the head losses in the penstock.
When a drop of water falls into a reservoir of water from a high enough altitude,...
When a drop of water falls into a reservoir of water from a high enough altitude, water droplets will splash Does the water in those droplets come from the original drop or from the reservoir?
Water at 50 °F is being transported from one open reservoir to another open reservoir using...
Water at 50 °F is being transported from one open reservoir to another open reservoir using a concrete pipe. The two reservoirs are 1.5 miles apart with a difference in surface elevations of 25 ft. Determine the minimum pipe diameter needed to carry 10 ft3 /s of water.
For a small scale hydraulic power system, the elevation difference between the reservoir water surface and...
For a small scale hydraulic power system, the elevation difference between the reservoir water surface and the pond water surface downstream of the reservoir is 20.35. The velocity of the water exhausting into the pond is 7 m/s, and the discharge through the system is 4 m3/s. The head loss due to friction in the penstock (inlet pipe to turbine, under very high pressure) is negligible. Find the power produced by the turbine in kilowatts. Assume specific weight of water...
Water flows steadily from an open tank as shown in the figure. (Figure 1) The elevation...
Water flows steadily from an open tank as shown in the figure. (Figure 1) The elevation of point 1 is 10.0m , and the elevation of points 2 and 3 is 2.00 m . The cross-sectional area at point 2 is 4.80x10^-2m ; at point 3, where the water is discharged, it is 1.60?10^?2m. The cross-sectional area of the tank is very large compared with the cross-sectional area of the pipe. Part A Assuming that Bernoulli's equation applies, compute the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT