Question

In: Statistics and Probability

Let X~N(-5,9). Find P(abs(X)<2) P(abs(X)>1) My stats professor gave this as an extra credit assignment but...

Let X~N(-5,9). Find

P(abs(X)<2)

P(abs(X)>1)

My stats professor gave this as an extra credit assignment but never went over it in class and said she won't answer any questions about it in her office hours so I'm completely lost. Help please!

Solutions

Expert Solution

P(abs(X)<2) = P(-2<X<2)

P (   -2   < X <   2   )                      
=P( (-2-(-5))/9 < (X-µ)/σ < (2-(-5))/9 )                                      
                                      
P (    0.333   < Z <    0.778   )                       
= P ( Z <    0.778   ) - P ( Z <   0.333   ) =    0.7816   -    0.6306   =    0.1511   (answer)

======================

P(abs(X)>1) = P(X>1 or X<-1)

P (   -1   < X <   1   )                  
=P( (-1--5)/9 < (X-µ)/σ < (1--5)/9 )                                  
                                  
P (    0.444   < Z <    0.667   )                   
= P ( Z <    0.667   ) - P ( Z <   0.444   ) =    0.7475   -    0.6716   =    0.0759

P(abs(X)>1) = P(X>1 or X<-1) = 1 - P (   -1   < X <   1   ) = 1 - 0.0759 = 0.9241 (answer)


Related Solutions

professor instructions for the assignment: You can earn extra credit if you read an article or...
professor instructions for the assignment: You can earn extra credit if you read an article or news item about a project we discussed in class and write a 2 page reaction paper about it. Your paper must tell me about the project you read about, what makes it a sustainable or resilient project, what are the impacts, what did you like about the article, what did you not like, etc.. I would like to write about this new project that...
9. Let X ~ N(194; 24). Find: (a) P(X <= 218) (b) P(145 < X <...
9. Let X ~ N(194; 24). Find: (a) P(X <= 218) (b) P(145 < X < 213) (c) The first quartile for X (d) The third quartile for X (e) the IQR for X (f) P(|X-194|> 41) 10. A soft drink machine discharges an average of 345 ml per cup. The amount of drink is normally distributed with standard deviation of 30 ml. What fraction of cups will contain more than 376 ml? (Keep 4 decimals)
Let X ~ N(190; 23). Find: (a) P(X <= 213) (b) P(148 < X < 202)...
Let X ~ N(190; 23). Find: (a) P(X <= 213) (b) P(148 < X < 202) (c) The first quartile for X (d) The third quartile for X (e) the IQR for X (f) P(|X-190|> 34
Let X ~ N(196; 19). Find: (a) P(X </= 223) (b) P(143 < X < 206)...
Let X ~ N(196; 19). Find: (a) P(X </= 223) (b) P(143 < X < 206) (c)  P(|X-196|> 30)
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X =...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X = 4) P(X < 5) P(X ≥ 4)
Let X ∼ Bin(9, 0.2). a. Find P(X > 6). b. Find P(X ≥ 2). c.Find...
Let X ∼ Bin(9, 0.2). a. Find P(X > 6). b. Find P(X ≥ 2). c.Find P(2≤X<5) d. Find P(2 < X ≤ 5). e.Find μX f.Find σX2
Let X be a binomial random variable with n = 11 and p = 0.3. Find...
Let X be a binomial random variable with n = 11 and p = 0.3. Find the following values. (Round your answers to three decimal places.) (a)     P(X = 5) (b)     P(X ≥ 5) (c)     P(X > 5) (d)     P(X ≤ 5) (e)     μ = np μ = (f)    σ = npq σ =
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write...
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write a function integral(A, X1, X2) that takes 3 inputs A, X0 and X1 A as stated above X1 and X2 be any real number, where X1 is the lower limit of the integral and X2 is the upper limit of the integral. Please write this code in Python.
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write...
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write a function integral(A, X1, X2) that takes 3 inputs A, X0 and X1 A as stated above X1 and X2 be any real number, where X1 is the lower limit of the integral and X2 is the upper limit of the integral. Please write this code in Python. DONT use any inbuilt function, instead use looping in Python to solve the question. You should...
Let X Geom(p). For positive integers n, k define P(X = n + k | X...
Let X Geom(p). For positive integers n, k define P(X = n + k | X > n) = P(X = n + k) / P(X > n) : Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT