Question

In: Physics

A) Write the Lagrangian for a simple pendulum consisting of a point mass m suspended at...

A) Write the Lagrangian for a simple pendulum consisting of a point mass m suspended at the end of a massless string of length l. Derive the equation of motion from the Euler-Lagrange equation, and solve for the motion in the small angle approximation. B) Assume the massless string can stretch with a restoring force F = -k (r-r0), where r0 is the unstretched length. Write the new Lagrangian and find the equations of motion. C) Can you re-write the resulting two coupled 2 nd -order differential equations as four coupled 1 st - order differential equations (Hint: Let v=dr/dt and ω = dϑ/dt).

Solutions

Expert Solution


Related Solutions

A simple pendulum may be described ideally as a point mass suspended by a massless string...
A simple pendulum may be described ideally as a point mass suspended by a massless string from some point about which it is allowed to swing back and forth in a place. A simple pendulum can be approximated by a small metal sphere which has a small radius and a large mass when compared relatively to the length and mass of the light string from which it is suspended. If a pendulum is set in motion so that is swings...
A simple pendulum consists of a small object of mass m= 0.150 kg suspended from a...
A simple pendulum consists of a small object of mass m= 0.150 kg suspended from a support stand by a light string. The string has a length L= 0.750 m. The string has an initial position given by θ= 65.0° relative to the vertical. The pendulum is released from rest. Air resistance is negligible during the subsequent motion of the pendulum. a)Calculate the work done by gravity on the pendulum as it moves from its initial position to the lowest...
Consider a pendulum consisting of a mass m in a gravitational field, with the (massless) pendulum...
Consider a pendulum consisting of a mass m in a gravitational field, with the (massless) pendulum arm being a spring of spring constant k and “resting length” b. The pendulum is confined to move in a plane as usual. Write the Lagrangian and find the equations of motion.
The length of a simple pendulum is 0.75 m and the mass of the particle (the...
The length of a simple pendulum is 0.75 m and the mass of the particle (the “bob”) at the end of the cable is 0.26 kg. The pendulum is pulled away from its equilibrium position by an angle of 9.2° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? (b) Using the position of the bob at its lowest point...
The length of a simple pendulum is 0.80 m and the mass of the particle (the...
The length of a simple pendulum is 0.80 m and the mass of the particle (the “bob”) at the end of the cable is 0.31 kg. The pendulum is pulled away from its equilibrium position by an angle of 7.4° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? (b) Using the position of the bob at its lowest point...
The length of a simple pendulum is 0.78 m and the mass of the particle (the...
The length of a simple pendulum is 0.78 m and the mass of the particle (the "bob") at the end of the cable is 0.26 kg. The pendulum is pulled away from its equilibrium position by an angle of 8.70° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? ___rad/s (b) Using the position of the bob at its lowest...
The length of a simple pendulum is 0.84 m and the mass of the particle (the...
The length of a simple pendulum is 0.84 m and the mass of the particle (the "bob") at the end of the cable is 0.23 kg. The pendulum is pulled away from its equilibrium position by an angle of 9.05° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion.
The length of a simple pendulum is 0.72 m and the mass of the particle (the...
The length of a simple pendulum is 0.72 m and the mass of the particle (the "bob") at the end of the cable is 0.21 kg. The pendulum is pulled away from its equilibrium position by an angle of 8.40° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? ____rad/s (b) Using the position of the bob at its lowest...
The length of a simple pendulum is 0.79 m and the mass of the particle (the
The length of a simple pendulum is 0.79 m and the mass of the particle (the
Q1: Consider the simple pendulum system, the length of the pendulum is ‘l’ and mass ‘m’...
Q1: Consider the simple pendulum system, the length of the pendulum is ‘l’ and mass ‘m’ has simple harmonic motion. Find the equation of motion using 2 approaches: Newtonian and Lagrangian. What do you conclude?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT