In: Finance
Consider the following information: |
Rate of Return if State Occurs | ||||
State of Economy | Probability of State of Economy |
Stock A | Stock B | Stock C |
Boom | 0.64 | 0.15 | 0.05 | 0.23 |
Bust | 0.36 | 0.07 | 0.07 | -0.09 |
Requirement 1: |
What is the expected return on an equally weighted portfolio of these three stocks? (Do not round your intermediate calculations.) |
(Click to select)9.77%12.27%21.80%24.57%4.04% |
Requirement 2: |
What is the variance of a portfolio invested 20 percent each in A and B and 60 percent in C? (Do not round your intermediate calculations.) |
1
Stock A | |||
Scenario | Probability | Return% | =rate of return% * probability |
Boom | 0.64 | 15 | 9.6 |
Bust | 0.34 | 7 | 2.38 |
Expected return %= | sum of weighted return = | 11.98 | |
Share B | |||
Scenario | Probability | Return% | =rate of return% * probability |
Boom | 0.64 | 5 | 3.2 |
Bust | 0.34 | 7 | 2.38 |
Expected return %= | sum of weighted return = | 5.58 | |
Share C | |||
Scenario | Probability | Return% | =rate of return% * probability |
Boom | 0.64 | 23 | 14.72 |
Bust | 0.34 | -9 | -3.06 |
Expected return %= | sum of weighted return = | 11.66 |
Expected return%= | Wt Stock A*Return Stock A+Wt Share B*Return Share B+Wt Share C*Return Share C |
Expected return%= | 0.3333*11.98+0.3333*5.58+0.3333*11.66 |
Expected return%= | 9.77 |
2
Stock A | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability |
Boom | 0.64 | 15 | 9.6 | 3.02 | 0.000583706 |
Bust | 0.34 | 7 | 2.38 | -4.98 | 0.000843214 |
Expected return %= | sum of weighted return = | 11.98 | Sum=Variance Stock A= | 0.00143 | |
Standard deviation of Stock A% | =(Variance)^(1/2) | 3.78 | |||
Share B | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability |
Boom | 0.64 | 5 | 3.2 | -0.58 | 2.15296E-05 |
Bust | 0.34 | 7 | 2.38 | 1.42 | 6.85576E-05 |
Expected return %= | sum of weighted return = | 5.58 | Sum=Variance Share B= | 0.00009 | |
Standard deviation of Share B% | =(Variance)^(1/2) | 0.95 | |||
Share C | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (C)^2* probability |
Boom | 0.64 | 23 | 14.72 | 11.34 | 0.008230118 |
Bust | 0.34 | -9 | -3.06 | -20.66 | 0.01451241 |
Expected return %= | sum of weighted return = | 11.66 | Sum=Variance Share C= | 0.02274 | |
Standard deviation of Share C% | =(Variance)^(1/2) | 15.08 | |||
Covariance Stock A Share B: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |
Boom | 0.64 | 3.0200 | -0.58 | -0.000112102 | |
Bust | 0.34 | -4.98 | 1.42 | -0.000240434 | |
Covariance=sum= | -0.000352537 | ||||
Correlation A&B= | Covariance/(std devA*std devB)= | -0.983270983 | |||
Covariance Stock A Share C: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% for C(C) | (A)*(C)*probability | |
Boom | 0.64 | 3.02 | 11.34 | 0.002191795 | |
Bust | 0.34 | -4.98 | -20.66 | 0.003498151 | |
Covariance=sum= | 0.005689946 | ||||
Correlation A&C= | Covariance/(std devA*std devC)= | 0.998824319 | |||
Covariance Share B Share C: | |||||
Scenario | Probability | Actual return% -expected return% For B(B) | Actual return% -expected return% for C(C) | (B)*(C)*probability | |
Boom | 0.64 | -0.58 | 11.34 | -0.000420941 | |
Bust | 0.34 | 1.42 | -20.66 | -0.000997465 | |
Covariance=sum= | -0.001418406 | ||||
Correlation B&C= | Covariance/(std devB*std devC)= | -0.990944921 | |||
Variance | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) | ||||
Variance | =0.2^2*0.03777^2+0.2^2*0.00949^2+0.6^2*0.15081^2+2*(0.2*0.2*0.03777*0.00949*-0.98327+0.2*0.6*0.00949*0.15081*-0.99094+0.2*0.6*0.99882*0.03777*0.15081) | ||||
Variance | 0.009245 |