Question

In: Physics

A firework of mass 0.25 kg is launched at an angle of 75o above the horizontal,...

A firework of mass 0.25 kg is launched at an angle of 75o above the horizontal, pointing due west. The initial speed of the firework is 69 m/s. At the top of its trajectory, it explodes into two pieces of equal mass. One of the pieces takes 2.1 s to fall to the ground, and lands on the ground a distance of 53 m due west from the launch position. Neglect air resistance.

(a) Find the velocity of both pieces just after the explosion.

(b) Where does the other piece land?

(c) Sketch a picture of the resulting motion and convince yourself that it is plausible.

Solutions

Expert Solution


Related Solutions

A firework of mass 0.25 kg is launched at an angle of 75 degrees above the...
A firework of mass 0.25 kg is launched at an angle of 75 degrees above the horizontal, pointing due west. The initial speed of the firework is 69 m/s. At the top of its trajectory, it explodes into two pieces of equal mass. One of the pieces takes 2.1 s to fall to the ground, and lands on the ground a distance of 53 m due west from the launch position. Neglect air resistance. (a) Find the velocity of both...
A rocket is launched at an angle of 60.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 99 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 29.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. Find the maximum altitude reached by the rocket. Find its total time of flight. Find its horizontal range.
A rocket is launched at an angle of 50.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 50.0° above the horizontal with an initial speed of 95 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 29.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. (b) Find its total time of flight. (c) Find its horizontal range. (c) Find its horizontal range.
A rocket is launched at an angle of 57.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 57.0° above the horizontal with an initial speed of 103 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. (b) Find its total time of flight. (c) Find its horizontal range.
A rocket is launched at an angle of 53.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 53.0° above the horizontal with an initial speed of 98 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 31.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. (b) Find its total time of flight. (c) Find its horizontal range.
A rocket is launched at an angle of 53.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 53.0° above the horizontal with an initial speed of 103 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. (m) (b) Find its total time of flight. (s) (c) Find its horizontal range. (m)
A ball is launched from the ground at an angle of 65∘ above the horizontal with...
A ball is launched from the ground at an angle of 65∘ above the horizontal with a velocity of 22m/s. The ball hits the ground some distance away at a given speed, and bounces back up. When it does so the amplitude of both the x and y components of its velocity are half what they were. This repeats with the ball losing half of it’s speed on each bounce. a) Sketch the problem. b) Write the equation of motion...
A projectile is launched at an angle of 60 degrees to the horizontal from 6.5ft above...
A projectile is launched at an angle of 60 degrees to the horizontal from 6.5ft above the ground at an initial speed of 100 ft/sec. Assume the x-axis is horizontal, the positive y axis is vertical (opposite g), the ground is horizontal, and the only gravitational force acta on the object. Answer parts A through D. A) Find the velocity - v(t) and position - r(t) vectors for t greater than or equal to 0. B) Graph the trajectory C)...
A projectile is launched with an initial velocity vo at an angle theta above the horizontal....
A projectile is launched with an initial velocity vo at an angle theta above the horizontal. In terms of vo, theta and acceleration due to gravity g, determine for the projectile i) the time to reach its maximum height and ii) its maximum height.
QUESTION 1 If the metallic ball is launched at an angle of 25° above the horizontal...
QUESTION 1 If the metallic ball is launched at an angle of 25° above the horizontal at a speed of 14 m/s. The ball returns to level ground. Which combination of changes must produce an increase in time of flight of a second launch? decrease the launch angle and decrease the ball’s initial speed increase the launch angle and decrease the ball’s initial speed decrease the launch angle and increase the ball’s initial speed increase the launch angle and increase...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT