Question

In: Advanced Math

For a binary FSK system, s1(t)=A cos (ω0+Ω)t and s2(t)=A cos (ω0-Ω)t are defined. a) Prove...

For a binary FSK system, s1(t)=A cos (ω0+Ω)t and s2(t)=A cos (ω0-Ω)t are defined.

a) Prove that the above signals are orthogonal if ΩT=nπ, where T is the bit interval and n is a positive integer.

b) Determine probability of error for the system

Solutions

Expert Solution


Related Solutions

if s1 and s2 are two simple functions then prove that the max and minimum of...
if s1 and s2 are two simple functions then prove that the max and minimum of then are also simple function.
If there are two energy states, S1 and S2 respectively such that S2>S1 then there exists...
If there are two energy states, S1 and S2 respectively such that S2>S1 then there exists some probability for an atom in S2 to decay to S1. What actually causes the atom to decay to the lower energy state? is it the fact that the lower state is more probable for the atom to be in as given by the Boltzmann Factor? so since it is more probable, it has more microstates and entropy causes it to decay? Please help...
Given that dE = CvdT = TdS - PdV prove S2 - S1 = Cv*ln(T2 /...
Given that dE = CvdT = TdS - PdV prove S2 - S1 = Cv*ln(T2 / T1) + R*ln( V2 / V1) for the Ideal gas.
Suppose you have a set of real-valued waveforms {s1(t), s2(t),..., sN(t)}, and you want to find...
Suppose you have a set of real-valued waveforms {s1(t), s2(t),..., sN(t)}, and you want to find a basis for the span of their complex envelopes. The obvious approach would be to first downconvert each of the waveforms, and then apply the Gram-Schmidt procedure to the set of complex envelopes. Will we get the same answer if we first apply Gram-Schmidt, and then downconvert? Justify your answer.
def anagramSolution1(s1,s2): alist = list(s2) pos1 = 0 stillOK = True while pos1 < len(s1) and...
def anagramSolution1(s1,s2): alist = list(s2) pos1 = 0 stillOK = True while pos1 < len(s1) and stillOK: pos2 = 0 found = False while pos2 < len(alist) and not found: if s1[pos1] == alist[pos2]: found = True else: pos2 = pos2 + 1 if found: alist[pos2] = None else: stillOK = False pos1 = pos1 + 1 return stillOK include all operations and calculate the Big-O and the values for c and n0.
Suppose you have two strains of mice, S1 and S2. Strain S2 is genetically modified to...
Suppose you have two strains of mice, S1 and S2. Strain S2 is genetically modified to metabolize a pharmacon P supposedly faster than S1. You conducted an experiment in a sample set of each strain, in which the pharmacon was injected and its concentration in blood was measured every 15min for 2h. Of course, age, gender, and weight was recorded for each animal. You want to statistically demonstrate that the metabolic rate of N is higher in S2 than S1....
The intersection (∩) of two sets (s1, s2) is the set of all elements that are...
The intersection (∩) of two sets (s1, s2) is the set of all elements that are in s1 and are also in s2. Write a function (intersect) that takes two lists as input (you can assume they have no duplicate elements), and returns the intersection of those two sets (as a list) without using the in operator or any built-in functions, except for range() and len(). Write some code to test your function, as well. Note: Do not use the...
Let S = (s1, s2, . . . , sn) be a given sequence of integer...
Let S = (s1, s2, . . . , sn) be a given sequence of integer numbers. The numbers can be positive or negative. We define a slice of S as a sub- sequence (si,si+1,...,sj) where 1 ≤ i < j ≤ n. The weight of a slice is defined as the sum of its elements. Provide efficient algorithms to answer each of the following questions: a)Is there any slice with zero weight ? b)Find the maximum weight slice in...
Consider a system with the input/output relationship y(t) = x(t)cos(15πt). (a) Is this system (i) linear,...
Consider a system with the input/output relationship y(t) = x(t)cos(15πt). (a) Is this system (i) linear, (ii) causal, (iii) stable, (iv) memoryless, (v) time-invariant, and (vi) invertible. Justify each answer with a clear mathematical argument. (b) Find the Fourier Transform Y (f) of y(t) in terms of the transform X(f) of x(t). Repeat problem (2) for the system with the input-output relationship y(t) =R1 τ=0(1−τ)2x(t−τ)dτ.
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >,...
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >, use the formula below to find the given derivative. d/(dt)[u(t)* v(t)] = u'(t)* v(t) + u(t)*  v'(t) d/(dt)[u(t) x v(t)] = <.______ , _________ , _______>
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT