In: Statistics and Probability
A particular brand of dishwasher soap is sold in three sizes: 30 oz, 45 oz, and 70 oz. Twenty percent of all purchasers select a 30-oz box, 50% select a 45-oz box, and the remaining 30% choose a 70-oz box. Let X1 and X2 denote the package sizes selected by two independently selected purchasers.
(a) Determine the sampling distribution of
X.
x | 30 | 37.5 | 45 | 50 | 57.5 | 70 |
p(x) |
Calculate
E(X).
E(X) =
oz
Compare
E(X)
to μ.
E(X) > μ
E(X) = μ
E(X) < μ
(b) Determine the sampling distribution of the sample variance
S2.
s2 | 0 | 112.5 | 312.5 | 800 |
p(s2) |
Calculate E(S2).
E(S2) =
Compare E(S2) to
σ2.
E(S2) > σ2
E(S2) = σ2
E(S2) < σ2
µ = E(X) = 0.2 * 30 + 0.5 * 45 + 0.3 * 70 = 49.5
E(X2) = 0.2 * 302 + 0.5 * 452 + 0.3 * 702 = 2662.5
Var(X) = E(X2) - (E(X))2 = 2662.5 - 49.52 = 212.25
a)
X P(X)
30 P(30,30) = 0.22 = 0.04
37.5 P(30,45) = 0.2 * 0.5 * 2 = 0.2
45 P(45,45) = 0.52 = 0.25
50 P(30,70) = 0.2 * 0.3 * 2 = 0.12
57.5 P(45,70) = 0.5 * 0.3 * 2 = 0.3
70 P(70,70) = 0.32 = 0.09
E(X) = 30 * 0.04 + 37.5 * 0.2 + 45 * 0.25 + 50 * 0.12 + 57.5 * 0.3 + 70 * 0.09 = 49.5
Option-B) E(X) = µ
b)
s2 P(s2)
0 P(30,30) + P(45,45) + P(70,70) = 0.22 + 0.52 + 0.32 = 0.38
112.5 P(30,45) = 0.2 * 0.5 * 2 = 0.2
312.5 P(45,70) = 0.5 * 0.3 * 2 = 0.3
800 P(30,70) = 0.2 * 0.3 * 2 = 0.12
E(s2) = 0 * 0.38 + 112.5 * 0.2 + 312.5 * 0.3 + 800 * 0.12 = 212.25
Option-B) E(S2) = σ2