In: Finance
Use the following information for the problem.
____________________________________________________
State of Probability of Returns if State Occurs
Economy State of Economy Stock S Stock T
____________________________________________________
Boom 0.10 12% 4%
Normal 0.65 9% 6%
Recession 0.25 2% 9%
____________________________________________________
a) Find the expected return of each stock.
Use at least seven decimal places in computations of (b), (c) and (d) below to avoid significant rounding errors.
b) Calculate the variance and standard deviation of returns of each stock.
c) Compute the covariance and correlation of returns between the two stocks.
d) Assume that you invest $4,500 in Stock S and $3,000 in Stock T. Find the expected return on the portfolio and the standard deviation of the portfolio’s return.
STOCK S | P | R1 | A=P*R1 | B1=R1-7.55 | C=B1^2 | D=C*P | ||||||
State of Economy | Probability | Return(%) | Probability*return | Deviation from mean | Deviation squared | Deviation Squared*Probability | ||||||
Boom | 0.1 | 12 | 1.2 | 4.45 | 19.80 | 1.98025 | ||||||
Normal | 0.65 | 9 | 5.85 | 1.45 | 2.10 | 1.36663 | ||||||
Recession | 0.25 | 2 | 0.5 | -5.55 | 30.80 | 7.70063 | ||||||
Total | 7.55 | Total | 11.04750 | |||||||||
Expected (Mean) Return of StockS | 7.55% | |||||||||||
Variance of return of stock S | 11.04750 | |||||||||||
Standard Deviation of Return of stockS | 3.32378 | Percent | (Square Root of Variance) | |||||||||
STOCK T | P | R2 | A=P*R2 | B2=R2-6.55 | C=B2^2 | D=C*P | ||||||
States | Probability | Return(%) | Probability*return | Deviation from mean | Deviation squared | Deviation Squared*Probability | ||||||
Boom | 0.1 | 4 | 0.4 | -2.55 | 6.50 | 0.65025 | ||||||
Normal | 0.65 | 6 | 3.9 | -0.55 | 0.30 | 0.19663 | ||||||
Recession | 0.25 | 9 | 2.25 | 2.45 | 6.00 | 1.50063 | ||||||
Total | 6.55 | Total | 2.34750 | |||||||||
Expected (Mean) Return of stock T | 6.55% | |||||||||||
Variance of return of stockT | 2.34750 | |||||||||||
Standard Deviation of return of Stock T | 1.53216 | Percent | (Square Root of Variance) | |||||||||
COVARIANCE BETWEEN STOCK S AND STOCK T | ||||||||||||
P | R1 | R2 | B1=R1-7.55 | B2=R2-6.55 | E1,2=B1*B2*P | |||||||
States | Probability | Return(%) | Return(%) | Deviation S from mean | Deviation T from mean | DeviationS*DeviationT*Probability | ||||||
Boom | 0.1 | 12 | 4 | 4.45 | -2.55 | -1.13475 | ||||||
Normal | 0.65 | 9 | 6 | 1.45 | -0.55 | -0.518375 | ||||||
Recession | 0.25 | 2 | 9 | -5.55 | 2.45 | -3.399375 | ||||||
SUM | -5.05250 | |||||||||||
Covariance(S,T) | -5.05250 | |||||||||||
Correlation (S,T)=Covariance (S,T)/((Standard Deviation S)*(Standard Deviation T)) | ||||||||||||
Correlation (S,T)= | -0.9921367 | |||||||||||
Expected Return | Variance | |||||||||||
STOCK S | 7.55% | 11.04750 | ||||||||||
STOCK T | 6.55% | 2.34750 | ||||||||||
Covariance(S,T) | -5.0525 | |||||||||||
Correlation (S,T) | -0.9921367 | |||||||||||
Investment in StockS | $4,500 | |||||||||||
Investment in StockT | $3,000 | |||||||||||
Total Investment | $7,500 | |||||||||||
Weight of S in Portfolio=4500/7500 | 0.60 | |||||||||||
Weight of T in Portfolio=300/7500 | 0.40 | |||||||||||
Portfolio Return =0.6*Expected Return of S+0.4*Expected Return of S | ||||||||||||
Portfolio Variance =(0.6^2)*Variance of S+(0.4^2)*Variance of T+2*0.6*0.4*Covariance(S,T) | ||||||||||||
EXPECTED RETURN OF PORTFOLIO | 7.15% | 0.6*7.55+0.4*6.55 | ||||||||||
PORTFOLIO VARIANCE | 1.92750 | (0.6^2)*11.04750+((0.462)*2.34750+2*0.6*0.4*(-5.05250) | ||||||||||
PORTFOLIO STANDARD DEVIATION | 1.38834 | % | (Square Root (1.9275) | |||||||||