Question

In: Statistics and Probability

Use the “d_logret_6stocks” dataset to answer the questions. (General Motor: GenMotor)(using R) (1) Regress the return...

Use the “d_logret_6stocks” dataset to answer the questions. (General Motor: GenMotor)(using R)

(1) Regress the return of General Motor on the returns of Citigroup with intercept and without intercept, respectively. Report the estimated coefficients.

(2) Generate an ANOVA table to conclude if regression effects are significant.

(3) Compute the correlation of General Motor and Citigroup, and test if their correlation is

zero.

(4) Test if the proportion of returns of Citigroup greater than Pfizer is 0.6.

dataset below

Date   Pfizer   Intel   Citigroup   AmerExp   Exxon   GenMotor
1-Aug-00   -0.001438612   0.049981263   0.044275101   0.017410003   0.010224894   0.093294017
1-Sep-00   0.017489274   -0.255619266   -0.033536503   0.012656982   0.03798902   -0.032209239
2-Oct-00   -0.017046116   0.034546736   -0.011645582   -0.004897625   0.000330555   -0.019602167
1-Nov-00   0.012012934   -0.072550667   -0.022674793   -0.03827587   -0.00365002   -0.0948916
1-Dec-00   0.016278701   -0.102497868   0.010708311   0   -0.005252049   0.012461253
2-Jan-01   -0.008063083   0.090223122   0.03990062   -0.066129678   -0.014169243   0.022971579
1-Feb-01   -0.00042298   -0.11219423   -0.055096146   -0.030733152   -0.014046895   0.000824088
1-Mar-01   -0.040906294   -0.035702138   -0.038726816   -0.026380545   -0.000240008   -0.012105099
2-Apr-01   0.024190228   0.069994483   0.038511978   0.011868735   0.038897488   0.024082196
1-May-01   -0.002978787   -0.05826061   0.019333184   -0.002446047   0.002844256   0.020148775
1-Jun-01   -0.029781389   0.03463487   0.013258067   -0.03564197   -0.006813464   0.053440295
2-Jul-01   0.012504432   0.008168789   -0.022187219   0.017739418   -0.019481402   -0.005100405
1-Aug-01   -0.0306632   -0.027529477   -0.038475736   -0.044368019   -0.01460743   -0.061635162
4-Sep-01   0.01981548   -0.135934121   -0.053479798   -0.098043942   -0.008224146   -0.105946472
1-Oct-01   0.019063731   0.077211653   0.050835509   0.006689711   0.00061005   -0.016274333
1-Nov-01   0.015543895   0.126580684   0.02356606   0.048543672   -0.020726234   0.08521096
3-Dec-01   -0.036145791   -0.016421934   0.022871285   0.035242521   0.021578866   -0.009657415
2-Jan-02   0.019356687   0.046876533   -0.025940517   0.002871379   -0.002807817   0.022139216
1-Feb-02   -0.006050198   -0.088680731   -0.020151007   0.007237226   0.026948074   0.01967222
1-Mar-02   -0.013187975   0.027384065   0.039197815   0.050683167   0.025807264   0.057331233
1-Apr-02   -0.038640426   -0.026448085   -0.058277811   0.00137534   -0.037828005   0.025768635
1-May-02   -0.020012226   -0.014900615   0.000481346   0.015691714   -0.000118352   -0.010495544
3-Jun-02   0.00498962   -0.179572434   -0.046948457   -0.068454444   0.010640133   -0.065487824
1-Jul-02   -0.034159152   0.01226155   -0.062746165   -0.01186007   -0.0465282   -0.060041503
1-Aug-02   0.011452067   -0.051537916   0.022330581   0.009740522   -0.013050696   0.016998701
3-Sep-02   -0.056822917   -0.079127863   -0.043102044   -0.063162423   -0.045786933   -0.090010126
1-Oct-02   0.039382501   0.09536996   0.097624046   0.067951966   0.023357105   -0.068058029
1-Nov-02   -0.001620779   0.082000518   0.022127194   0.029514688   0.017231827   0.083238291
2-Dec-02   -0.013493147   -0.127500953   -0.043258124   -0.040869439   0.001739589   -0.032155007
2-Jan-03   -0.000914625   0.002562217   -0.008110182   0.002151752   -0.009860009   -0.006417575
3-Feb-03   -0.007697729   0.042681011   -0.012956568   -0.024428147   0.001227785   -0.025617995
3-Mar-03   0.01899439   -0.025156666   0.014203546   -0.004565156   0.011692992   -0.001942487
1-Apr-03   -0.005686915   0.053056729   0.056727624   0.057647618   0.003171011   0.030362391
1-May-03   0.005686915   0.054144721   0.021322255   0.041490099   0.01767084   -0.00280191
2-Jun-03   0.041784483   -0.000213046   0.018444872   0.001579917   -0.005981586   0.008214181
1-Jul-03   -0.010109859   0.077829522   0.023189447   0.024870758   -0.003990877   0.016906014
1-Aug-03   -0.045266311   0.06043443   -0.01419843   0.008620388   0.028166116   0.046380496
2-Sep-03   0.006546894   -0.016587184   0.021075597   0.000112293   -0.01291723   -0.001791893
1-Oct-03   0.017184425   0.078321576   0.020888904   0.018572284   -0.00024981   0.018169063
3-Nov-03   0.028255616   0.007861351   -0.003462108   -0.01144524   -0.001501884   0.006155458
1-Dec-03   0.022153888   -0.019719492   0.013782077   0.024270976   0.054151115   0.096343714
2-Jan-04   0.015748075   -0.021237664   0.011862818   0.03132587   -0.00221919   -0.031390331
2-Feb-04   0.002115176   -0.018679024   0.006780909   0.01301928   0.01712318   -0.009458693
1-Mar-04   -0.01928823   -0.030753805   0.012267738   -0.012145545   -0.006030469   -0.007941261
1-Apr-04   0.008607804   -0.024068646   -0.027843588   -0.024949111   0.009863444   0.001620126
3-May-04   -0.003063819   0.045791862   -0.015263851   0.015239967   0.00995531   -0.014176433
1-Jun-04   -0.013135825   -0.01478726   0.000692103   0.006594513   0.011450989   0.011337234
1-Jul-04   -0.030491723   -0.053760665   -0.019188415   -0.009580051   0.018083807   -0.03339934
2-Aug-04   0.011876253   -0.058250748   0.023904782   -0.002001822   0.000773627   -0.013614662
1-Sep-04   -0.02833205   -0.02581149   -0.023595125   0.012265109   0.020475586   0.012073829
1-Oct-04   -0.024200939   0.045251691   0.006452318   0.01438828   0.007945468   -0.042109935
1-Nov-04   -0.015356644   0.003157084   0.003644451   0.021085951   0.019898881   0.006031965
1-Dec-04   -0.01408469   0.019040089   0.032148678   0.005093112   8.64354E-05   0.016341604
3-Jan-05   -0.046516472   -0.017862074   0.00770161   -0.022982941   0.002842759   -0.036824626
1-Feb-05   0.039975516   0.030472706   -0.008076244   0.006507102   0.090927282   -0.00798521
1-Mar-05   -0.000338104   -0.013929818   -0.02606549   -0.02185412   -0.026194026   -0.083992068
1-Apr-05   0.014633051   0.00525287   0.023245386   0.011111802   -0.019130346   -0.042013994
2-May-05   0.014630589   0.060803225   0.001318328   0.009356124   -0.004194614   0.079608491
1-Jun-05   -0.005088825   -0.015344193   -0.008162243   -0.004091884   0.009725145   0.03275369
1-Jul-05   -0.017295755   0.018252426   -0.022110024   0.014246467   0.009586797   0.034619924
1-Aug-05   -0.014040733   -0.02213234   0.002713407   0.001894712   0.010547196   -0.02599387
1-Sep-05   -0.008682706   -0.01834345   0.016994806   0.016950229   0.025608232   -0.047977476
3-Oct-05   -0.060303366   -0.020818266   0.002497608   -0.003389887   -0.053831314   -0.048092196
1-Nov-05   0.002411637   0.058709923   0.03829912   0.024183203   0.031923551   -0.070676054

Solutions

Expert Solution

The R code is pasted below. Please store the data set that you have provided here in a file named "w_logret_3stocks.txt" and then only run the R program. Also, don't forget to change the path name of the .txt file in the first line of the R program to the path name of the .txt file where you have stored the data

# SETTING UP THE DATA
data = read.table("C:\\Users\\LAPTOP\\Desktop\\w_logret_3stocks.txt",header=T)
names(data)
attach(data)

# QUESTION 1, REPORTING THE REGRESSION COEFFICIENTS
# WITH INTERCEPT
model1 = lm(GenMotor ~ Citigroup,data)
model1
# WITHOUT INTERCEPT
model2 = lm(GenMotor ~ Citigroup - 1,data)
model2

# QUESTION 2, ANOVA TABLE TO CONCLUDE IF REGRESSION EFFECTS ARE SIGNIFICANT
summary(model1)
summary(model2)

# QUESTION 3, COMPUTING CORRELATION AND PERFORMING CORRELATION TEST
cor(GenMotor,Citigroup)
cor.test(GenMotor,Citigroup,alternative="two.sided")

# QUESTION 4, ONE SAMPLE PROPORTION TEST
prop.array = ifelse(Citigroup > Pfizer,1,0)
prop = sum(prop.array)
n = length(prop.array)
prop.test(prop,n,p=0.6,alternative="greater")


Related Solutions

Solve it by R Use the “d_logret_6stocks” dataset to answer the questions. Test by using α=...
Solve it by R Use the “d_logret_6stocks” dataset to answer the questions. Test by using α= .01. (General Motor: GenMotor). (1) Regress the return of General Motor on the returns of Citigroup (with intercept). Report the estimated coefficients. Is there any evidence to show strong linear relationship between these two variables at significance level 5%? (2) Suppose we “know” the return of Citigroup tomorrow is 0.05, what is the predicted return of General Motor tomorrow? (3) Compute the correlation of...
ANSWER USING R CODE Using the dataset 'LakeHuron' which is a built in R dataset describing...
ANSWER USING R CODE Using the dataset 'LakeHuron' which is a built in R dataset describing the level in feet of Lake Huron from 1872- 1972. To assign the values into an ordinary vector,x, we can do the following 'x <- as.vector(LakeHuron)'. From there, we can access the data easily. Assume the values in X are a random sample from a normal population with distribution X. Also assume the X has an unknown mean and unknown standard deviation. With this...
Solve it by R Use the ‘cement’ dataset in ‘MASS’ package to answer the question. (1)...
Solve it by R Use the ‘cement’ dataset in ‘MASS’ package to answer the question. (1) Conduct the multiple linear regression, regress y value on x1, x2, x3 and x4 (without intercept). Report the estimated coefficients. Which predictor variables have strong linear relationship with response variable y at significance level 0.05? (2) What is the adjusted R square of your regression? What is the interquartile range (IQR) of the residuals from your regression? (3) Conduct a best subset regression (with...
Please do these questions in the R language 1. Load the cars dataset into R. It...
Please do these questions in the R language 1. Load the cars dataset into R. It is a built-in dataset. 2. Do an str() to determine the number of observations and variables. Enter your answer as a comment. 3. Plot speed on x axis and distance on y axis. 4. Find the correlation between speed and distance. What does the magnitude and sign indicate? Enter your answer as a comment. 5. Build a linear regression model with speed as the...
Using the Motor Trend Car Road Tests dataset mtcars, in faraway R package, fit a model...
Using the Motor Trend Car Road Tests dataset mtcars, in faraway R package, fit a model with mpg: Miles/(US) gallon as the response and the other variables as predictors. (a) Which variables are statistically significant at the 5% level? For each and every test provide the null and alternative hypotheses, critical region (or rejection region), test statistics and your conclusions. (30) (b) What interpretation should be given to the coefficient for vs: Engine? (3) (c) Compute 90 and 95% confidence...
Using R Studio: 1)Use the `mtcars` data (`data(mtcars)`) to answer these questions: a) Which rows of...
Using R Studio: 1)Use the `mtcars` data (`data(mtcars)`) to answer these questions: a) Which rows of the data frame contain cars that weigh more than 4000 pounds (the variable is `wt`, units are 1000 pounds). b) Which cars are these? (*Hint:* since rows are named by car name, use `row.names()`). c) What is the mean displacement (in inches^3^ ) for cars with at least 200 horsepower (`hp`). d) Which car has the highest fuel economy (`mpg`)? e) What was the...
Fitting a linear model using R a. Read the Toluca.txt dataset into R (this dataset can...
Fitting a linear model using R a. Read the Toluca.txt dataset into R (this dataset can be found on Canvas). Now fit a simple linear regression model with X = lotSize and Y = workHrs. Summarize the output from the model: the least square estimators, their standard errors, and corresponding p-values. b. Draw the scatterplot of Y versus X and add the least squares line to the scatterplot. c. Obtain the fitted values ˆyi and residuals ei . Print the...
Using R to solve these questions: 1.Consider the following dataset: fuel <- c(0.95, 0.52, 0.82, 0.89,...
Using R to solve these questions: 1.Consider the following dataset: fuel <- c(0.95, 0.52, 0.82, 0.89, 0.81) The numbers correspond to the amount of fuel burnt by a new type of high-efficiency engine under a randomised test load. A value of 1 corresponds to the same fuel efficiency as the old engine, values greater than one correspond to more fuel burned (hence lower efficiency) and values less than one correspond to greater efficiency. (a) One-sided or two-sided test? Justify. (b)...
Using R to solve these questions: 1.Consider the following dataset: fuel <- c(0.95, 0.52, 0.82, 0.89,...
Using R to solve these questions: 1.Consider the following dataset: fuel <- c(0.95, 0.52, 0.82, 0.89, 0.81) The numbers correspond to the amount of fuel burnt by a new type of high-efficiency engine under a randomised test load. A value of 1 corresponds to the same fuel efficiency as the old engine, values greater than one correspond to more fuel burned (hence lower efficiency) and values less than one correspond to greater efficiency. (a) One-sided or two-sided test? Justify. (b)...
I need this in R code please: Use the dataset ’juul’ in package ’ISwR’ to answer...
I need this in R code please: Use the dataset ’juul’ in package ’ISwR’ to answer the question. (1) Conduct one-way ANOVA test to test if the mean of igf1 of each level of tanner are the same? (2) What is the mean of igf1 in each level of tanner? (3) If there is any difference, which ones appear to be different? (Use pairwise t test for each pair of level with bonferroni method)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT