Question

In: Math

how many local extrema of each type does f(x,y) have if f(x,y)= 4x-((x^3))+3y-y^3?

how many local extrema of each type does f(x,y) have if f(x,y)= 4x-((x^3))+3y-y^3?

Solutions

Expert Solution


Related Solutions

How to find the local extrema for y^3- 3yx^2 -3y^2-3x^2+1.
How to find the local extrema for y^3- 3yx^2 -3y^2-3x^2+1. 
Find and classify the local extrema of the function f(x,y) = (x^3)y+12(x^2)+16(y^2).
Find and classify the local extrema of the function f(x,y) = (x^3)y+12(x^2)+16(y^2).
Find the local extrema of the following function. f(x,y)=108+7xy-5x2-6y2
Find the local extrema of the following function. f(x,y)=108+7xy-5x2-6y2
let f(x,y)=x^2y(2-x+y^2)-4x^2(1+x+y)^7+x^3y^2(1-3x-y)^8 find the coefficient of x^5y^3
let f(x,y)=x^2y(2-x+y^2)-4x^2(1+x+y)^7+x^3y^2(1-3x-y)^8 find the coefficient of x^5y^3
1. Use a second derirative test for biviriates to determine all local extrema for f(x,y)=3x^2-4xy+3y^2+8x-17y+30
1. Use a second derirative test for biviriates to determine all local extrema for f(x,y)=3x^2-4xy+3y^2+8x-17y+30
x' = -6x - 3y + te^2t y' = 4x + y Find the general solution...
x' = -6x - 3y + te^2t y' = 4x + y Find the general solution using undetermined coeffiecients
x' = -6x - 3y + te^2t y' = 4x + y Find the general solution...
x' = -6x - 3y + te^2t y' = 4x + y Find the general solution using undetermined coeffiecients
Given the function f(x,y)=2x^3 + 6xy^2 - 3y^2 - 150x. Find the local minimums, maximums and...
Given the function f(x,y)=2x^3 + 6xy^2 - 3y^2 - 150x. Find the local minimums, maximums and saddle points of f(x,y).
For the function f(x,y) = 4xy - x^3 - 2y^2 find and label any relative extrema...
For the function f(x,y) = 4xy - x^3 - 2y^2 find and label any relative extrema or saddle points. Use the D test to classify. Give your answers in (x,y,z) form. Use factions, not decimals.
The derivative of a function is f'(x)=-6x^2(x-1)(x+2). How can I identify any local extrema of f,...
The derivative of a function is f'(x)=-6x^2(x-1)(x+2). How can I identify any local extrema of f, if any? How can use the First Derivative test to determine if any of the local extreme identified are a relative maximum or a relative minimum?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT