Question

In: Chemistry

The equilibrium constant, K, for the following reaction is 3.35×10-2 at 629 K. COCl2(g) <---->CO(g) +...

The equilibrium constant, K, for the following reaction is 3.35×10-2 at 629 K.

COCl2(g) <---->CO(g) + Cl2(g)

An equilibrium mixture of the three gases in a 11.0 L container at 629 K contains 0.217 M COCl2, 8.52×10-2 M CO and 8.52×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if the equilibrium mixture is compressed at constant temperature to a volume of 5.95 L?

Solutions

Expert Solution

wq


Related Solutions

The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) +...
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 600 K contains 0.315 M COCl2, 6.38×10-2 M CO and 6.38×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.31×10-2 mol of Cl2(g) is added to the flask? [COCl2] =____ M [CO] =____ M [Cl2] = ____M
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) +...
The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) CO(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 600 K contains 0.294 M COCl2, 6.16×10-2 M CO and 6.16×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 4.50×10-2 mol of CO(g) is added to the flask? [COCl2] = M [CO] = M [Cl2] = M
1) The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) <---...
1) The equilibrium constant, K, for the following reaction is 1.29×10-2 at 600 K. COCl2(g) <--- ---> CO(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 600 K contains  0.206 M  COCl2, 5.16×10-2 M CO and 5.16×10-2M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 2.88×10-2 mol of CO(g) is added to the flask? [COCl2] = M [CO] = M [Cl2] = M 2) The equilibrium constant,...
At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2...
At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2 (g) has a value of 4.6 x 109. If 0.40 mol of COCl2 is placed into a 10.0 L flask at 100.0 C, what will be the equilibrium concentration of all species? (A simplifying approximation that will make the solution of the resulting equation easier is to note that x is much less than 0.040mol/L. This means that 0.040 -x is approximately 0.040.)
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----->H2(g) +...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----->H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.322 M HI, 4.32×10-2 M H2 and 4.32×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.12×10-2 mol of I2(g) is added to the flask? [HI] = M [H2] = M [I2] = M
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----><H2(g) +...
The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----><H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.307 M HI,   4.13×10-2 M H2 and 4.13×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.173 mol of HI(g) is added to the flask? [HI] = M [H2] = M [I2] = M
The equilibrium constant, K, for the following reaction is 1.87×10-2 at 511 K. PCl5(g) <--------->>>PCl3(g) +...
The equilibrium constant, K, for the following reaction is 1.87×10-2 at 511 K. PCl5(g) <--------->>>PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a 13.1 L container at 511 K contains 0.209 M PCl5,   6.24×10-2 M PCl3 and 6.24×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if the equilibrium mixture is compressed at constant temperature to a volume of 7.01 L? [PCl5] = M [PCl3] = M [Cl2] =...
The equilibrium constant, K, for the following reaction is 1.42×10-2 at 504 K. PCl5(g) --> PCl3(g)...
The equilibrium constant, K, for the following reaction is 1.42×10-2 at 504 K. PCl5(g) --> PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a 10.9 L container at 504 K contains 0.279 M PCl5, 6.29×10-2 M PCl3 and 6.29×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if the equilibrium mixture is compressed at constant temperature to a volume of 4.95 L? [PCl5] = M [PCl3] = M [Cl2]...
The equilibrium constant, K, for the following reaction is 3.16×10-2 at 525 K. PCl5(g) <----->PCl3(g) +...
The equilibrium constant, K, for the following reaction is 3.16×10-2 at 525 K. PCl5(g) <----->PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a 4.56 L container at 525 K contains 0.243 M PCl5,   8.77×10-2 M PCl3 and 8.77×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if the volume of the container is increased to 10.3 L? [PCl5] = M [PCl3] = M [Cl2] = M
The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) +...
The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 500 K contains 0.218 M PCl5, 5.11×10-2 M PCl3 and 5.11×10-2 M Cl2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.92×10-2 mol of PCl3(g) is added to the flask? [PCl5] = M [PCl3] = M [Cl2] = M
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT