Question

In: Civil Engineering

Describe the mechanism of failure of Reinforced Concrete beam in bending        

Describe the mechanism of failure of Reinforced Concrete beam in bending        

Solutions

Expert Solution

The mechanism of failure of Reinforced Concrete beam in bending :

The analysis of failure and crack development in beams made of concrete is presented. The analysis was carried out on the basis of the performed experimental investigation and numerical simulations. A fictitious crack model based on nonlinear fracture mechanics was applied to investigate the development of strain softening of tensile concrete in plain concrete and slightly reinforced concrete beams.

The load capacity of concrete structures is affected by the cracking behavior of concrete.

Concrete is considered to be a quasi-brittle material, and therefore, when analyzing the cracking behavior of concrete, not only tensile strength but also tensile toughness is of paramount importance .

A brittle failure due to the formation of a flexural crack takes place in plain and slightly reinforced concrete beams. The strain softening of tensile concrete is of paramount importance when analyzing crack propagation and failure process in these beams. The cracking moment decides about the load carrying capacity of the beams.

The progressive microcracking appears in the tip of the inclined crack, but strain softening of tensile concrete is not the only mechanism of carrying shear stresses.

Failure modes in reinforced concrete beams are classified into two major types:

flexural failure and

shear failure.

Flexural failure modes:

1)Flexural Tension failure

2)Fluxural compression Failure

3)Balanced failure
.Shear Failure Modes

1)Diagonal Tension Failure.

2)Shear Compression Failure.

3)Splitting Shear (True Shear) Failure. 4)Anchorage failure.


Related Solutions

Complete the bending design of a simply supported reinforced concrete beam with the following parameters: Service...
Complete the bending design of a simply supported reinforced concrete beam with the following parameters: Service loads are WD = 2.5 Kip/ft and WL = 1.5 Kip/ft, Span = 16 ft, f'c = 6,000 psi, fy = 40,000 psi, b = 12 in., cover to the center of the steel = 3 in. Assume phi = 0.9, but make sure that phi is actually 0.9 at the end. Find h by doubling the recommended minimum height for this beam and...
A reinforced concrete beam of normal weight concrete with an effective depth of 20 IN and...
A reinforced concrete beam of normal weight concrete with an effective depth of 20 IN and a width of 12 IN is reinforced with 3 IN2 of grade 60 (fy = 60 KSI) rebar. The beam has a concrete compressive strength f’c of 3000 PSI. (a) Determine the maximum ultimate moment which can be applied to the beam. (b) If the only dead load on the beam is self-weight, determine the allowable uniformly distributed live load which can be applied...
. A simply supported reinforced concrete beam needs to be designed with the following details: Size...
. A simply supported reinforced concrete beam needs to be designed with the following details: Size of Beam: 350 mm x 450 mm. Effective length of Beam: 8 m. Dead Load excluding self-weight of Beam: 30.5 kN/m Reinforcement: 25 mm bars and 8 mm stirrups Effective cover to compression reinforcement: 30 mm i. Design the beam and find out the number of bars required. ii. Design the beam for shear. iii. Draw the detailing of beam. Live load = 8KN/m...
. A simply supported reinforced concrete beam needs to be designed with the following details: Size...
. A simply supported reinforced concrete beam needs to be designed with the following details: Size of Beam: 350 mm x 450 mm. Effective length of Beam: 8 m. Dead Load excluding self-weight of Beam: 30.5 kN/m Reinforcement: 25 mm bars and 8 mm stirrups Effective cover to compression reinforcement: 30 mm i. Design the beam and find out the number of bars required. ii. Design the beam for shear. iii. Draw the detailing of beam. Live load = 3KN/m...
Phases of behavior of RC beam in bending when the load increases from 0 to failure.
Phases of behavior of RC beam in bending when the load increases from 0 to failure.
1.A reinforced concrete beam having a width of 500 mm and an effective depth of 750...
1.A reinforced concrete beam having a width of 500 mm and an effective depth of 750 mm is reinforced with 5 – 25mm φ. The beam has simple span of 10 m. It carries an ultimate uniform load of 50 KN/m. Use f’c = 28 MPa, and fy = 413 MPa. Determine the value of fs in MPa. Express your answer in two decimal places. 2.A reinforced concrete beam having a width of 500 mm and an effective depth of...
a reinforced concrete bearing wall supports a 12" wide beam bearing in the full width of...
a reinforced concrete bearing wall supports a 12" wide beam bearing in the full width of the wall spaced 10' o.c. . The bottom of the wall is a fixed connection. the top of the wall is a pinned connection. The wall is 20' tall. The load from each beam, Pu is 30 kips. Determine whether a 10" wall will work for this condition. select vertical and horizontal reinforcing steel.
A reinforced concrete beam has square cross section (h × h). There are 9 steel reinforcing...
A reinforced concrete beam has square cross section (h × h). There are 9 steel reinforcing bars (each of diameter ds), 3 evenly spaced towards the top, 3 along the neutral axis, and 3 evenly spaced towards the bottom. The vertical distance from the centre of the bar to top (or bottom) edge of the section is called the cover, and is denoted as e. It should be taken that ρsteel = 7850 kg/m3, ρconcrete = 2350 kg/m3, Econcrete =...
Design a rectangular reinforced concrete beam for a simple span of 35 ft. Uniform service loads...
Design a rectangular reinforced concrete beam for a simple span of 35 ft. Uniform service loads are 1.0 kip/ft dead load (excluding the self-weight of the beam) and 1.2 kips/ft live load. Use f′c=4,000 psi and fy=60,000 psi. Sketch your design.
Design a rectangular reinforced concrete beam for a simple span of 32 ft. Uniform service loads...
Design a rectangular reinforced concrete beam for a simple span of 32 ft. Uniform service loads are 1.5 kips/ft dead load and 2.0 kips/ft live load. Assuming that the total depth h is not to exceed 32 in. and that there is no limitation on the width b. Use f′c = 3000 psi and fy = 60,000 psi. Sketch your design
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT