Question

In: Mechanical Engineering

As a lubricant engineer, you design a new friction modifier as an additive for synthetic oil...

As a lubricant engineer, you design a new friction modifier as an additive for synthetic oil to reduce friction between two surfaces. Describe the content of your new friction modifier and mechanism to protect the surface.

Solutions

Expert Solution

NEW FRICTION MODIFIER

  • The new additive for synthetic oil to reduced friction between two surface.
  • They can prevent surface from coming into direct contact, reduce friction and wear.
  • The new lubrication oil reduce frictional losses and more efficient lubrication is order to reduce CO2 mission.
  • The new friction modifier to reduce lubricant viscosity to minimize hydrodynamic shear, pumping losses and much more.
  • The new friction modefier to increases life time of lubricants.
  • Lubricant surface should be soft/accurate.
  • Artificially made synthetic oil is a lubricant oil consisting of chemical compounds.
  • The synthetic oil made using chemically modified petroleum components rather than whole crude oil but also be synthesized from other raw materials. Synthetic oil is used as subsitute for petroleum refined oils operating in high temperatures.
  • It is used in metal stamping to provide environmental and other benefits compared to conventional petroleum and animal fat based products.
  • Synthetic oil is good on your engine and has fewer impurities. It has long life compare to conventional oils. Synthetic oil do not break down as easily as compare to conventional oils.
  • Performance of automobile increases to improve horse power and torque.
  • synthetic oil as a lubricant to increase life span of rotating machine parts.(Engine).

Related Solutions

A major oil company has developed a new gasoline additive that is supposed to increase mileage....
A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive)d=(gas mileage with additive)−(gas mileage without additive). Use a significance level of α=0.05α=0.05 for the...
A major oil company has developed a new gasoline additive that is supposed to increase mileage.
  A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive). Use a significance level of α=0.05 for the test. Assume that the gas...
A major oil company has developed a new gasoline additive that is supposed to increase mileage.
A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive)). Use a significance level of α=0.1 for the test. Assume that the gas mileages...
A major oil company has developed a new gasoline additive that is supposed to increase mileage....
A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive)d=(gas mileage with additive)−(gas mileage without additive). Use a significance level of α=0.01 for the...
A major oil company has developed a new gasoline additive that is supposed to increase mileage....
A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive). Use a significance level of α=0.05 for the test. Assume that the gas mileages...
A major oil company has developed a new gasoline additive that is supposed to increase mileage....
A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive). Use a significance level of α=0.05 for the test. Assume that the gas mileages...
A major oil company has developed a new gasoline additive that is supposed to increase mileage....
A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive). Use a significance level of α=0.05 for the test. Assume that the gas mileages...
A major oil company has developed a new gasoline additive that is supposed to increase mileage....
A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive) Use a significance level of α=0.05 for the test. Assume that the gas mileages...
A major oil company has developed a new gasoline additive that is supposed to increase mileage....
A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive). Use a significance level of α=0.05 for the test. Assume that the gas mileages...
A major oil company has developed a new gasoline additive that is supposed to increase mileage....
A major oil company has developed a new gasoline additive that is supposed to increase mileage. To test this hypothesis, ten cars are randomly selected. The cars are driven both with and without the additive. The results are displayed in the following table. Can it be concluded, from the data, that the gasoline additive does significantly increase mileage? Let d=(gas mileage with additive)−(gas mileage without additive)d=(gas mileage with additive)−(gas mileage without additive). Use a significance level of α=0.01 for the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT