Question

In: Chemistry

You mix Fe^3+ with SCN^- and form the product [FeSCN]^2+. After mixing the reactants and allowing...

You mix Fe^3+ with SCN^- and form the product [FeSCN]^2+. After mixing the reactants and allowing the system to reach equilibrium, which statements are true? More than one statement is true.

a) the forward and reverse reactions continue to occur
b) the reaction stops (no molecules convert between reactant/product)
c) the forward rate constant is equal to the reverse rate constant
d) the amount of product present is constant
e) the rate of the forward reaction is equal to the rate of the reverse reaction
f) the solution color will be constant

Solutions

Expert Solution

The Correct Statements are A, D, E, F

When the concentrations of reactants and products have become constant, an equation is said to have reached a point of equilibrium. The consistency of measurable properties such as concentration, color, pressure and density can show a state of equilibrium.

Chemical equilibrium, a condition in the course of a reversible chemical reaction in which no net change in the amounts of reactants and products occurs. A reversible chemical reaction is one in which the products, as soon as they are formed, react to produce the original reactants. At equilibrium, the two opposing reactions go on at equal rates, or velocities, hence there is no net change in the amounts of substances involved.

The conditions that pertain to equilibrium may be given quantitative formulation. For example, for the reversible reaction AB + C, the velocity of the reaction to the right, r1, is given by the mathematical expression (based on the law of mass action) r1 = k1(A), where k1 is the reaction-rate constant and the symbol in parentheses represents the concentration of A. The velocity of the reaction to the left, r2, is r2 = k2(B)(C). At equilibrium, r1 = r2, therefore:


Related Solutions

thanks Fe+3 + SCN- ----> <---- FeSCN+2 You mix the following: Volume of KSCN solution 4.27...
thanks Fe+3 + SCN- ----> <---- FeSCN+2 You mix the following: Volume of KSCN solution 4.27 mL Original concentration of KSCN solution 0.00495 M Volume of ferric ion solution 4.74 mL Original concentration of ferric ion solution 0.02488 M Voluume of distilled water 5.25 mL You measure the %T of the blank and sample at 447 nm using the same cuvet. Only FeSCN2+ absorbs at 446 nm! KSCN and Fe+3 are transparent. %T of blank 100.6 %T of sample 42.7...
Fe(NO3)3+KSCN ---- FeSCN^2+KNO3 the assumption was made that all of the SCN^- which had been added...
Fe(NO3)3+KSCN ---- FeSCN^2+KNO3 the assumption was made that all of the SCN^- which had been added to the standard solutions had been converted to FeSCN^2+. Is this assumption reasonable. Explain considering the initial concentration of SCN- relative to that of Fe3+ in each sample soln 0.200M Fe(NO3)3 (ml) 0.00200M KSCN (ml) water (ml) FeSCN2+ (ml) 1 5.00 0.20 4.80 4x10^-5 2 5.00 0.40 4.60 8x10^-5 3 5.00 0.60 4.40 1.2x10^-4 4 5.00 0.80 4.20 1.6x10^-4 5 5.00 1.00 4.00 2.00x10-4
In the reaction: Fe^3+ + SCN^− ⇌ [Fe(NCS)]2+ The initial concentration of Fe^3+ was 0.109 and...
In the reaction: Fe^3+ + SCN^− ⇌ [Fe(NCS)]2+ The initial concentration of Fe^3+ was 0.109 and the initial concentration of SCN^− was 0.105. After equilibrium was established, the concentration of the complex was 0.09. What is the equilibrium constant?
An experiment with Le Chatelier's Principle resulted in this equation: Fe3+ + SCN- <=> Fe(SCN)2+ First...
An experiment with Le Chatelier's Principle resulted in this equation: Fe3+ + SCN- <=> Fe(SCN)2+ First off, should the first reactant be Fe2+ or Fe3+? Our TA said Fe2+, but I'm not sure why it's not Fe3+ since we were adding Fe3+ to observe changes in equilibrium. (The lab manual specifies that Fe(SCN)2+ in a product.) Second, it was obvious that adding Fe3+ and SCN- shifted the equilibrium to the right toward products. However, addition of NaH2PO4 shifted the equilibrium...
Using the initial concentrations of [Fe(H2O)6]^3+, SCN^-, and the equilibrium concentration of the [Fe(H2O)5SCN]^2+ complex, calculate...
Using the initial concentrations of [Fe(H2O)6]^3+, SCN^-, and the equilibrium concentration of the [Fe(H2O)5SCN]^2+ complex, calculate the equilibrium concentrations of both [Fe(H2O)6]^3+ and SCN^-. All mol/L. Ice table is needed. Initial concentrations of [Fe(H2O)6^3+: Initial concentrations of SCN: [Fe(H2O)5SCN]^2+ equilibrium: Fe(H2O)6 - SCN - EQ Fe(H2O)5SCN 0.390 1.54 23.42 0.390 3.12 35.99 0.390 4.84 58.09 0.390 6.25 74.81 0.390 7.96 98.97
Consider the following reaction : Fe3+ (aq) + SCN- (aq) ---> Fe(SCN)2+ (aq) Starting with 4.00...
Consider the following reaction : Fe3+ (aq) + SCN- (aq) ---> Fe(SCN)2+ (aq) Starting with 4.00 mL of .200 M Fe3+ (aq) in a cuvette, 0.10 mL increments of 0.00100 M SCN- (aq) will be added. Assume that because [Fe3+ (aq)] >> [SCN- (aq)], the [Fe(SCN)2+] concentration can be calculated from the limiting reagent, SCN-. Calculate [Fe(SCN)2+]. Volume .00100 M KSCN mL [Fe(SCN)2+] (M) .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00
PART D: Study of the Equilibrium: Fe3+(aq) + SCN– (aq) ⇌ [FeSCN] 2+(aq) pale yellow red...
PART D: Study of the Equilibrium: Fe3+(aq) + SCN– (aq) ⇌ [FeSCN] 2+(aq) pale yellow red 20. Which reagent(s) did you use to enhance the formation of [FeSCN] 2+(aq)? Why? 21. Indicate which ion was added to or removed from the equilibrium mixture, based on the reagent(s) you chose in question 20. 22. Which reagent(s) did you use to enhance the formation of Fe3+(aq)? Why? 23. Indicate which ion was added to or removed from the equilibrium mixture, based on...
Fe(III) forms a complex with thiocyanate, Fe(SCN)2+, that has a molar absorptivity of 7.00 x 103...
Fe(III) forms a complex with thiocyanate, Fe(SCN)2+, that has a molar absorptivity of 7.00 x 103 at 580 nm. A 5.00 ml aliquot of a solution that contains 47.4 ppm Fe3+ is reacted with excess thiocyanate and diluted to 25 ml. a) What fraction of 580 nm light is absorbed in a 1.00 cm pathlength cell by this solution? Consider 5.00 ml of this solution diluted to a volume of 50ml b) What fraction of 580 nm light is absorbed...
in part 1 of this experiment how are solution of unknown Fe(SCN)2+ made?
in part 1 of this experiment how are solution of unknown Fe(SCN)2+ made?
If acidic H2O2 is mixed with Fe^2+, which reaction occurs: the oxidation of Fe^2+ to Fe^3+...
If acidic H2O2 is mixed with Fe^2+, which reaction occurs: the oxidation of Fe^2+ to Fe^3+ or the reduction of Fe^2+ to Fe? Give the balanced redox reaction for each possibility and explain your reason for selecting the reaction which will occur. Assume standard solution concentrations. For a) I have: red: H2O2 + 2H+ + 2e- ---> 2 H2O E=+1.78 V oxi Fe2+ ----> Fe3+ + e- E=-0.77V Ecell = 1.01V I'm stuck on b) but for the explanation I...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT