In: Finance
Problem 11-25 Portfolio Returns and Deviations [LO 1, 2]
Consider the following information on a portfolio of three stocks:
State of | Probability of | Stock A | Stock B | Stock C | ||||||||
Economy | State of Economy | Rate of Return | Rate of Return | Rate of Return | ||||||||
Boom | .15 | .02 | .32 | .60 | ||||||||
Normal | .55 | .10 | .12 | .20 | ||||||||
Bust | .30 | .16 | − | .11 | − | .35 | ||||||
a. If your portfolio is invested 40 percent each in A and B and 20 percent in C, what is the portfolio’s expected return, the variance, and the standard deviation? (Do not round intermediate calculations. Round your variance answer to 5 decimal places, e.g., 32.16161. Enter your other answers as a percent rounded to 2 decimal places, e.g., 32.16.)
Expected return | % | |
Variance | ||
Standard deviation | % | |
b. If the expected T-bill rate is 3.75 percent,
what is the expected risk premium on the portfolio? (Do not
round intermediate calculations and enter your answer as a percent
rounded to 2 decimal places, e.g., 32.16.)
Expected risk premium
%
a.
Stock A | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability |
Boom | 0.15 | 2 | 0.3 | -8.6 | 0.0011094 |
Normal | 0.55 | 10 | 5.5 | -0.6 | 0.0000198 |
Bust | 0.3 | 16 | 4.8 | 5.4 | 0.0008748 |
Expected return %= | sum of weighted return = | 10.6 | Sum=Variance Stock A= | 0.002 | |
Standard deviation of Stock A% | =(Variance)^(1/2) | 4.48 | |||
Stock B | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability |
Boom | 0.15 | 32 | 4.8 | 23.9 | 0.00856815 |
Normal | 0.55 | 12 | 6.6 | 3.9 | 0.00083655 |
Bust | 0.3 | -11 | -3.3 | -19.1 | 0.0109443 |
Expected return %= | sum of weighted return = | 8.1 | Sum=Variance Stock B= | 0.02035 | |
Standard deviation of Stock B% | =(Variance)^(1/2) | 14.26 | |||
Stock C | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (C)^2* probability |
Boom | 0.15 | 60 | 9 | 50.5 | 0.03825375 |
Normal | 0.55 | 20 | 11 | 10.5 | 0.00606375 |
Bust | 0.3 | -35 | -10.5 | -44.5 | 0.0594075 |
Expected return %= | sum of weighted return = | 9.5 | Sum=Variance Stock C= | 0.10373 | |
Standard deviation of Stock C% | =(Variance)^(1/2) | 32.21 | |||
Covariance Stock A Stock B: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |
Boom | 0.15 | -8.6000 | 23.9 | -0.0030831 | |
Normal | 0.55 | -0.6 | 3.9 | -0.0001287 | |
Bust | 0.3 | 5.40 | -19.1 | -0.0030942 | |
Covariance=sum= | -0.006306 | ||||
Correlation A&B= | Covariance/(std devA*std devB)= | -0.987491968 | |||
Covariance Stock A Stock C: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% for C(C) | (A)*(C)*probability | |
Boom | 0.15 | -8.6 | 50.5 | -0.0065145 | |
Normal | 0.55 | -0.6 | 10.5 | -0.0003465 | |
Bust | 0.3 | 540.00% | -44.5 | -0.007209 | |
Covariance=sum= | -0.01407 | ||||
Correlation A&C= | Covariance/(std devA*std devC)= | -0.975895953 | |||
Covariance Stock B Stock C: | |||||
Scenario | Probability | Actual return% -expected return% For B(B) | Actual return% -expected return% for C(C) | (B)*(C)*probability | |
Boom | 0.15 | 23.9 | 50.5 | 0.01810425 | |
Normal | 0.55 | 3.9 | 10.5 | 0.00225225 | |
Bust | 0.3 | -19.1 | -44.5 | 0.0254985 | |
Covariance=sum= | 0.045855 | ||||
Correlation B&C= | Covariance/(std devB*std devC)= | 0.998098586 | |||
Expected return%= | Wt Stock A*Return Stock A+Wt Stock B*Return Stock B+Wt Stock C*Return Stock C | ||||
Expected return%= | 0.4*10.6+0.4*8.1+0.2*9.5 | ||||
Expected return%= | 9.38 | ||||
Variance | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) | ||||
Variance | =0.4^2*0.04477^2+0.4^2*0.14265^2+0.2^2*0.32206^2+2*(0.4*0.4*0.04477*0.14265*-0.98749+0.4*0.2*0.14265*0.32206*0.9981+0.4*0.2*-0.9759*0.04477*0.32206) | ||||
Variance | 0.010793 | ||||
Standard deviation= | (variance)^0.5 | ||||
Standard deviation= | 10.39% |
b.
Expected risk premium = Portfolio return-risk free rate = 9.38-3.75=5.63%