Question

In: Math

Solve the following given differential equations by using the following method: method of variations of parameters....

Solve the following given differential equations by using the following method: method of variations of parameters.

1. ?′′′ −?′′ −?′ +? = ??

2. ?′′ − 2?′ + ? = ?? sin−1 ?

Solutions

Expert Solution


Related Solutions

Determine the general solution to the differential equations using the method of variation of parameters y''...
Determine the general solution to the differential equations using the method of variation of parameters y'' + 6y'+9y = x^(-1)
Using variation of parameters, find a particular solution of the given differential equations: a.) 2y" +...
Using variation of parameters, find a particular solution of the given differential equations: a.) 2y" + 3y' - 2y = 25e-2t (answer should be: y(t) = 2e-2t (2e5/2 t - 5t - 2) b.) y" - 2y' + 2y = 6 (answer should be: y = 3 + (-3cos(t) + 3sin(t))et ) Please show work!
Solve the given system of differential equations. ??/?? = ? + 4? ??/?? = ? +...
Solve the given system of differential equations. ??/?? = ? + 4? ??/?? = ? + y
Series Solutions of Ordinary Differential Equations For the following problems solve the given differential equation by...
Series Solutions of Ordinary Differential Equations For the following problems solve the given differential equation by means of a power series about the given point x0. Find the recurrence relation; also find the first four terms in each of two linearly independent solutions (unless the series terminates sooner). If possible, find the general term in each solution. (1-x)y"+xy-y=0, x0=0
Series Solutions of Ordinary Differential Equations For the following problems solve the given differential equation by...
Series Solutions of Ordinary Differential Equations For the following problems solve the given differential equation by means of a power series about the given point x0. Find the recurrence relation; also find the first four terms in each of two linearly independent solutions (unless the series terminates sooner). If possible, find the general term in each solution. (4-x2)y"+2y=0, x0
Use variation of parameters to solve the following differential equations y''-5y'-6y=tln(t)
Use variation of parameters to solve the following differential equations y''-5y'-6y=tln(t)
($4.6 Variation of Parameters): Solve the equations (a)–(c) using method of variation of parameters. (a) y''-6y+9y=8xe^3x...
($4.6 Variation of Parameters): Solve the equations (a)–(c) using method of variation of parameters. (a) y''-6y+9y=8xe^3x (b) y''-2y'+2y=e^x (secx) (c) y''-2y'+y= (e^x)/x
Find a particular solution to the following differential equation using the method of variation of parameters....
Find a particular solution to the following differential equation using the method of variation of parameters. x2y′′ − 11xy′ + 20y  =  x2 ln x
Use the variation of parameters method to solve the differential equation: y''' - 16y' = 2
Use the variation of parameters method to solve the differential equation: y''' - 16y' = 2
Using method of variation of parameters, solve the differential equation: y''+y'=e^(2x) Find the general solution, and...
Using method of variation of parameters, solve the differential equation: y''+y'=e^(2x) Find the general solution, and particular solution using this method.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT