In: Statistics and Probability
Use a calculator to verify that Σx = 128, Σx2 = 6272, Σy = 150, Σy2 = 4778, and Σxy = 2966. Compute r. (Round your answer to three decimal places.)
Sample size n = 5
SOLUTION:
From given data,
Use a calculator to verify that Σx = 128, Σx2 = 6272, Σy = 150, Σy2 = 4778, and Σxy = 2966. Compute r. (Round your answer to three decimal places.)
Sample size n = 5
Σx = 128
Σx2 = 6272
Σy = 150
Σy2 = 4778
Σxy = 2966
Sample size = n = 5
r = Cov(x,y) / sqrt(Var(x))*sqrt(Var(y))
r = (1/n)*Σxy - / sqrt((1/n)*Σ(x-)2)*sqrt((1/n)*Σ(y-)2)
Where,
= Σx / n = 128/5 = 25.6
= Σy / n = 150/5 = 30
Similarly,
(1/n)*Σ(x-)2 = (1/n)*Σ(x2+2 - 2x )
= (1/n)*Σ(x2+2 - 2 2)
= (1/n)*Σ(x2-2)
= 6272/5 - (128/5)2
Similarly,
(1/n)*Σ(y-)2 = (1/n)*Σ(y2+2 - 2y )
= (1/n)*Σ(y2+2 - 2 2)
= (1/n)*Σ(y2-2)
= 4778/5 - (150/5)2
r = (1/n)*Σxy - / sqrt((1/n)*Σ(x-)2)*sqrt((1/n)*Σ(y-)2)
r = (1/5)*2966 - (128/5)*(150/5 ) / sqrt( (6272/5) - (128/5)2)*sqrt((4778/5) - (150/5)2)
r = 593.2 - 768 / sqrt( 1254.4 - 655.36)*sqrt(955.6 - 900)
r = -174.8 / (24.475293665*7.4565407529)
r = -174.8 / 182.50102465
r = - 0.9578028
r = - 0.957 (round to 3 decimal places)