Question

In: Math

Explain the concept of optimization. Explain the general procedure used to do an optimization problem. Use...

Explain the concept of optimization. Explain the general procedure used to do an optimization problem. Use an example and include steps

Solutions

Expert Solution


Related Solutions

General question: how do you find constraints in an optimization problem?
  General question: how do you find constraints in an optimization problem? For example, in this question:"Find two natural numbers whose sum is 16 and whose product is a maximum." the solution states that the constraint is that x would be between 1 and 15. Why not 0? In another example, where the questions asks "The perimeter of a rectangle is 24 cm. Find the dimensions of the rectangle of maximum area. What is the maximum area?", the constraint is...
Optimization Problem
We want to construct a box whose base length is three times the base width. The material used to build the top and bottom cost $10/ft2 and the material to build the sides cost $6/ft2 . If the box must have volume 50 ft3 , what is the minimum cost of the box?
Solve the following optimization problem (Be sure to include the statement of the optimization problem and...
Solve the following optimization problem (Be sure to include the statement of the optimization problem and a graph of the feasible in your solution): Jamie has joined a building contest. A dog shape requires 3 small blocks and one large block to build. A robot shape requires 5 small bricks and 5 large bricks to build. Jamie has a supply of 240 small bricks and 100 large bricks. If a dog is worth 2 points and a robot is worth...
2 Optimization Use fminsearch to solve the following unconstrained optimization problem. min x∈R4 f(x) = (x1...
2 Optimization Use fminsearch to solve the following unconstrained optimization problem. min x∈R4 f(x) = (x1 + 10x2)^2 + 5(x3 − x4)^2 + (x2 − 2x3)^4 + 10(x1 − x4)^4 Use the following as initial guess x0 = [3 -1 0 1] (x0 us a column not a row) What is the minimizer you find, and what is the value of the objective function f(x) at that point? Also, report the number of iterations taken to converge.
• 1. Explain in general terms the concept of return in investment. Why is this concept...
• 1. Explain in general terms the concept of return in investment. Why is this concept important in the analysis of financial performance? - 2. (a) Explain how an increase in financial leverage can increase a company's ROE.   (b) Given the potentially positive relation between financial leverage and ROE, Why don't we see companies with 100% financial leverage (entirely nonowner financed)
Use the CLV concept to explain the typical pricing approach used by major carriers.
Use the CLV concept to explain the typical pricing approach used by major carriers.
Why do we use S/N ratios as the criterion for optimization?
Why do we use S/N ratios as the criterion for optimization?
Explain how airlines use 'Route Optimization' in order to save the cost.
Explain how airlines use 'Route Optimization' in order to save the cost.
To find the optimal solution to a linear optimization problem, do you have to examine all...
To find the optimal solution to a linear optimization problem, do you have to examine all the points in the feasible region? Explain. Can a linear programming problem have no solution? More than one solution? Explain. ---------------------------------------------------------------------------------------------------------------- A beverage can manufacturer makes three sizes of soft drink cans—Small, Medium and Large. Production is limited by machine availability, with a combined maximum of 90 production hours per day, and the daily supply of metal, no more than 120 kg per day....
Optimization problem for calculus 3. Possible use of Lagrange Multiple? Question: What are the largest and...
Optimization problem for calculus 3. Possible use of Lagrange Multiple? Question: What are the largest and smallest outputs of the function x 2+2y2 on the ellipse x2+y2+xy=3
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT