Question

In: Math

Use spherical coordinates to evaluate the triple integral ∭e^−(x^2+y^2+z^2)/(x^2 + y^2 + z^2) dV , Where...

Use spherical coordinates to evaluate the triple integral ∭e^−(x^2+y^2+z^2)/(x^2 + y^2 + z^2) dV , Where E is the region bounded by the spheres x^2 + y^2 + z^2 = 4 and x^2 + y^2 + z^2 = 9

Solutions

Expert Solution

In shperical coordinates,

The limit of inetgration will be,

Let,


Related Solutions

Use spherical coordinates. Evaluate Triple Integral (1 − x2 − y2) dV, where H is the...
Use spherical coordinates. Evaluate Triple Integral (1 − x2 − y2) dV, where H is the solid hemisphere x2 + y2 + z2 ≤ 9, z ≥ 0.
Use spherical coordinates. Evaluate (x2 + y2) dV E , where E lies between the spheres...
Use spherical coordinates. Evaluate (x2 + y2) dV E , where E lies between the spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 9.
Set up the triple integral of an arbitrary continuous function f(x, y, z) in spherical coordinates...
Set up the triple integral of an arbitrary continuous function f(x, y, z) in spherical coordinates over the solid shown. (Assume a = 4 and b = 8. ) f(x, y, z) dV E = 0 π/2 f  , , dρ dθ dφ 4
Use spherical coordinates. Evaluate (4 − x2 − y2) dV, where H is the solid hemisphere...
Use spherical coordinates. Evaluate (4 − x2 − y2) dV, where H is the solid hemisphere x2 + y2 + z2 ≤ 9, z ≥ 0. H
Use spherical coordinates. Evaluate (6 − x2 − y2) dV, where H is the solid hemisphere...
Use spherical coordinates. Evaluate (6 − x2 − y2) dV, where H is the solid hemisphere x2 + y2 + z2 ≤ 16, z ≥ 0. H
1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2...
1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2 1B) Use the Divergence Theorem to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2
Use the Stoke’s theorem to evaluate Z Z S (∇×F)·nˆ·dS where F(x, y, z) = (x^2...
Use the Stoke’s theorem to evaluate Z Z S (∇×F)·nˆ·dS where F(x, y, z) = (x^2 z^2,y^2 z^2, xyz) and surface S is part of the paraboloid z = x^2 + y^2 that lies inside the cylinder x^2 + y^2 = 4, oriented upwards. Sketch the surface S and label everything.
Use spherical coordinates to find the volume of solid within the sphere x^2 + y^2 +...
Use spherical coordinates to find the volume of solid within the sphere x^2 + y^2 + z^2 = 16 and above the cone 3z^2 = x^2 + y^2 and lying in the 1st octant.
using / for integral Evaluate the double integral //R cos( (y-x)/(y+x) )dA where R is the...
using / for integral Evaluate the double integral //R cos( (y-x)/(y+x) )dA where R is the trapezoidal region with vertices (1,0), (2,0), (0,2), and (0,1)
Evaluate the line integral, where C is the given curve. ∫CF(x,y,z)⋅dr where F(x,y,z)=xi+yj+ysin(z+1)k and C consists...
Evaluate the line integral, where C is the given curve. ∫CF(x,y,z)⋅dr where F(x,y,z)=xi+yj+ysin(z+1)k and C consists of the line segment from (2,4,-1) to (1,-1,3).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT