In: Statistics and Probability
Structurally deficient highway bridges. Data on structurally deficient highway bridges is compiled by the Federal Highway Administration (FHWA) and reported in the National Bridge Inventory (NBI). For each state, the NBI lists the number of structurally deficient bridges and the total area (thousands of square feet) of the deficient bridges. The data for the 50 states (plus the District of Columbia and Puerto Rico). For future planning and budgeting, the FHWA wants to estimate the total area of structurally deficient bridges in a state based on the number of deficient bridges
NumberSD |
SDArea |
1899 |
432.71 |
155 |
60.92 |
181 |
110.57 |
997 |
347.35 |
3140 |
5177.97 |
580 |
316.92 |
358 |
387.78 |
20 |
9.05 |
24 |
59.34 |
302 |
412.92 |
1028 |
344.86 |
142 |
39.8 |
349 |
135.43 |
2501 |
1192.43 |
2030 |
688.19 |
5153 |
1069.71 |
2991 |
527.47 |
1362 |
458.37 |
1780 |
1453.26 |
349 |
131.13 |
388 |
236.18 |
585 |
521.83 |
1584 |
804.15 |
1156 |
325.9 |
3002 |
692.75 |
4433 |
1187.42 |
473 |
90.94 |
2382 |
335.75 |
47 |
20.08 |
383 |
127.66 |
750 |
752.43 |
404 |
196.67 |
2128 |
1427.73 |
2272 |
1034.61 |
743 |
101.42 |
2862 |
965.16 |
5793 |
1423.25 |
514 |
393.96 |
5802 |
2404.61 |
164 |
237.96 |
1260 |
626.38 |
1216 |
209.33 |
1325 |
481.31 |
2186 |
1031.45 |
233 |
102.56 |
500 |
153.8 |
1208 |
483.68 |
400 |
502.03 |
1058 |
331.59 |
1302 |
399.8 |
389 |
143.46 |
241 |
195.43 |
e) Build a 90% CI, confidence interval, for coefficient of NumberSD ( ).
f) Repeat (e) with a 95% CI. What is the difference between your answer in (e) and (f)?
We will use R-software to make scatterplot ,and to fit a regression model.
Given data is
NumberSD |
SDArea |
1899 |
432.71 |
155 |
60.92 |
181 |
110.57 |
997 |
347.35 |
3140 |
5177.97 |
580 |
316.92 |
358 |
387.78 |
20 |
9.05 |
24 |
59.34 |
302 |
412.92 |
1028 |
344.86 |
142 |
39.8 |
349 |
135.43 |
2501 |
1192.43 |
2030 |
688.19 |
5153 |
1069.71 |
2991 |
527.47 |
1362 |
458.37 |
1780 |
1453.26 |
349 |
131.13 |
388 |
236.18 |
585 |
521.83 |
1584 |
804.15 |
1156 |
325.9 |
3002 |
692.75 |
4433 |
1187.42 |
473 |
90.94 |
2382 |
335.75 |
47 |
20.08 |
383 |
127.66 |
750 |
752.43 |
404 |
196.67 |
2128 |
1427.73 |
2272 |
1034.61 |
743 |
101.42 |
2862 |
965.16 |
5793 |
1423.25 |
514 |
393.96 |
5802 |
2404.61 |
164 |
237.96 |
1260 |
626.38 |
1216 |
209.33 |
1325 |
481.31 |
2186 |
1031.45 |
233 |
102.56 |
500 |
153.8 |
1208 |
483.68 |
400 |
502.03 |
1058 |
331.59 |
1302 |
399.8 |
389 |
143.46 |
241 |
195.43 |
First we will import data into R
> NumberSD=scan("clipboard")
Read 52 items
> SDArea=scan("clipboard")
Read 52 items
>
head(data.frame(NumberSD,SDArea),10)
# to print first 10 observations
NumberSD SDArea
1
1899 432.71
2 155 60.92
3
181 110.57
4 997 347.35
5 3140
5177.97
6
580 316.92
7
358 387.78
8
20 9.05
9
24 59.34
10 302
412.92
e)
Build a 90% CI, confidence interval, for coefficient of NumberSD ( b1).
90% CI, confidence interval, for ( b1). is given by
CI = { - * SE() , + * SE() }
Here = 0.34560 and SE() = 0.06158
is t-distributed with n-2 = 52-2 = 50 degree of freedom and =0.10, { for 90% CI, }
It can be computed from statistical book or more accurately from any software like R,Excel
From R
> qt(1-.1/2,50)
[1] 1.675905
Thus = 1.675905
Hence 90% CI, confidence interval, for ( b1) is given by
CI = { - * SE() , + * SE() }
= { 0.34560 - 1.675905 * 0.06158 , 0.34560 + 1.675905 * 0.06158 }
= { 0.2423978 , 0.4488022 }
90% CI, confidence interval, for coefficient of NumberSD ( b1) is { 0.24240 , 0.44880 }
f)
Repeat (e) with a 95% CI. What is the difference between your answer in (e) and (f)?
90% CI, confidence interval, for ( b1). is given by
CI = { - * SE() , + * SE() }
is t-distributed with 50 degree of freedom but =0.05, { for 95% CI, }
From R
> qt(1-.05/2,50)
[1] 2.008559
Thus = 2.008559
Hence 95% CI, confidence interval, for ( b1) is given by
CI = { - * SE() , + * SE() }
= { 0.34560 - 2.008559 * 0.06158 , 0.34560 + 2.008559 * 0.06158 }
= { 0.2219129 , 0.4692871 }
95% CI, confidence interval, for coefficient of NumberSD ( b1) is { 0.22191 , 0.46929 }
Difference between part in (e) and (f) is that 95% confidence interval which is { 0.22191 , 0.46929 } is greater than that of 90% confidence interval { 0.24240 , 0.44880 } . ie A 90 % confidence interval for ( b1) is narrower .
please give me like.