In: Statistics and Probability
X Y
0 140
1 140
4 0
0 180
3 80
2 120
4 0
1 200
2 120
3 40
(a) The simple linear regression equation is:
y = 188 - 43*x
The value of Y when X = 3.5 is 37.5.
(b) R2 = 0.834
Adjusted R2 = 0.813
83.4% of the variation in the model is explained.
(c) The hypothesis being tested is:
H0: β1 = 0
H1: β1 ≠ 0
The p-value is 0.0002.
Since the p-value (0.0002) is less than the significance level (0.05), we can reject the null hypothesis.
Therefore, we can conclude that the model is significant.
X | Y | |||||
0 | 140 | |||||
1 | 140 | |||||
4 | 0 | |||||
0 | 180 | |||||
3 | 80 | |||||
2 | 120 | |||||
4 | 0 | |||||
1 | 200 | |||||
2 | 120 | |||||
3 | 40 | |||||
r² | 0.834 | |||||
r | -0.913 | |||||
Std. Error | 30.373 | |||||
n | 10 | |||||
k | 1 | |||||
Dep. Var. | Y | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 36,980.000 | 1 | 36,980.000 | 40.09 | .0002 | |
Residual | 7,380.000 | 8 | 922.5000 | |||
Total | 44,360.000 | 9 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=8) | p-value | 95% lower | 95% upper |
Intercept | 188.0000 | |||||
X | -43.0000 | 6.7915 | -6.331 | .0002 | -58.6613 | -27.3387 |
Predicted values for: Y | ||||||
95% Confidence Interval | 95% Prediction Interval | |||||
X | Predicted | lower | upper | lower | upper | Leverage |
3.5 | 37.500 | 5.213 | 69.787 | -39.623 | 114.623 | 0.213 |