In: Statistics and Probability
Given a random sample of size 322. Find a 99% confidence
interval for the population proportion if the number of successes
was 168.
(Use 3 decimal places.)
lower limit | |
upper limit |
Solution :
Given that,
n = 322
x = 168
Point estimate = sample proportion = = x / n = 168/322=0.522
1 - = 1- 0.522 =0.478
At 99% confidence level the z is ,
= 1 - 99% = 1 - 0.99 = 0.01
/ 2 = 0.01 / 2 = 0.005
Z/2 = Z0.005 = 2.576 ( Using z table )
Margin of error = E = Z / 2 * (((( * (1 - )) / n)
= 2.576* (((0.522*0.478) /322 )
E = 0.072
A 99% confidence interval for population proportion p is ,
- E < p < + E
0.522-0.072 < p < 0.522+ 0.072
0.450< p < 0.594
The 99% confidence interval for the population proportion p is : lower limit=0.450,upper limit=0.594