In: Statistics and Probability
We assume that our wages will increase as we gain experience and become more valuable to our employers. Wages also increase because of inflation. By examining a sample of employees at a given point in time, we can look at part of the picture. How does length of service (LOS) relate to wages? The data here (data390.dat written below) is the LOS in months and wages for 60 women who work in Indiana banks. Wages are yearly total income divided by the number of weeks worked. We have multiplied wages by a constant for reasons of confidentiality.
(a) Plot wages versus LOS. Consider the relationship and whether
or not linear regression might be appropriate. (Do this on paper.
Your instructor may ask you to turn in this graph.)
(b) Find the least-squares line. Summarize the significance test
for the slope. What do you conclude?
Wages = | ____+____LOS |
t = | |
P = |
(d) Give a 95% confidence interval for the slope.
worker wages los size 1 57.5591 49 Large 2 38.9148 114 Small 3 72.6089 105 Small 4 47.9553 75 Small 5 49.325 74 Large 6 45.0708 35 Small 7 65.2774 20 Large 8 81.4614 164 Large 9 74.4743 24 Large 10 66.7027 24 Small 11 49.7468 118 Large 12 43.3773 104 Small 13 51.8696 24 Small 14 46.9347 79 Large 15 45.1459 41 Large 16 42.0055 72 Large 17 40.3196 73 Large 18 40.5613 53 Small 19 47.2716 61 Large 20 38.8769 16 Large 21 65.738 135 Large 22 49.8769 116 Small 23 39.6822 100 Large 24 55.0231 75 Small 25 39.7514 32 Large 26 62.4771 63 Small 27 43.6881 37 Small 28 68.4972 29 Large 29 66.8898 33 Large 30 40.2356 187 Large 31 43.8013 122 Small 32 51.5445 55 Large 33 50.3812 75 Large 34 60.0526 83 Small 35 44.1453 28 Large 36 87.1545 96 Large 37 59.3941 140 Large 38 37.2679 37 Small 39 46.1983 137 Large 40 41.6133 150 Small 41 40.0572 59 Small 42 73.7666 63 Small 43 40.0042 134 Large 44 38.7618 79 Small 45 39.3117 39 Large 46 43.6889 47 Small 47 64.5969 54 Large 48 65.2548 21 Large 49 38.1001 55 Small 50 66.9966 21 Large 51 64.3793 76 Large 52 39.8683 72 Large 53 49.3329 48 Large 54 38.0247 17 Small 55 54.6429 70 Small 56 47.4064 71 Large 57 50.9659 30 Small 58 40.9046 32 Large 59 58.1326 145 Small 60 37.0958 29 Large
a)
b)
x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
49 | 57.5591 | 452.98 | 36.68 | -128.90 |
114 | 38.9148 | 1911.15 | 158.46 | -550.30 |
105 | 72.6089 | 1205.25 | 445.47 | 732.74 |
75 | 47.9553 | 22.25 | 12.58 | -16.73 |
74 | 49.325 | 13.81 | 4.74 | -8.09 |
35 | 45.0708 | 1244.91 | 41.37 | 226.94 |
20 | 65.2774 | 2528.41 | 189.74 | -692.64 |
164 | 81.4614 | 8782.81 | 897.52 | 2807.63 |
24 | 74.4743 | 2142.15 | 527.69 | -1063.20 |
24 | 66.7027 | 2142.15 | 231.04 | -703.51 |
118 | 49.7468 | 2276.88 | 3.08 | -83.79 |
104 | 43.3773 | 1136.81 | 66.02 | -273.96 |
24 | 51.8696 | 2142.15 | 0.13 | -16.98 |
79 | 46.9347 | 75.98 | 20.87 | -39.82 |
41 | 45.1459 | 857.51 | 40.41 | 186.15 |
72 | 42.0055 | 2.95 | 90.20 | -16.30 |
73 | 40.3196 | 7.38 | 125.06 | -30.38 |
53 | 40.5613 | 298.71 | 119.71 | 189.10 |
61 | 47.2716 | 86.18 | 17.90 | 39.28 |
16 | 38.8769 | 2946.68 | 159.41 | 685.37 |
135 | 65.738 | 4188.25 | 202.64 | 921.26 |
116 | 49.8769 | 2090.01 | 2.64 | -74.33 |
100 | 39.6822 | 883.08 | 139.72 | -351.27 |
75 | 55.0231 | 22.247 | 12.393 | 16.604 |
32 | 39.7514 | 1465.614 | 138.094 | 449.880 |
63 | 62.4771 | 53.047 | 120.437 | -79.930 |
37 | 43.6881 | 1107.780 | 61.068 | 260.097 |
29 | 68.4972 | 1704.314 | 288.812 | -701.589 |
33 | 66.8898 | 1390.047 | 236.762 | -573.681 |
187 | 40.2356 | 13622.780 | 126.948 | -1315.061 |
122 | 43.8013 | 2674.614 | 59.312 | -398.292 |
55 | 51.5445 | 233.580 | 0.002 | -0.638 |
75 | 50.3812 | 22.247 | 1.258 | -5.290 |
83 | 60.0526 | 161.714 | 73.100 | 108.726 |
28 | 44.1453 | 1787.880 | 54.132 | 311.096 |
96 | 87.1545 | 661.347 | 1271.049 | 916.845 |
140 | 59.3941 | 4860.414 | 62.274 | 550.160 |
37 | 37.2679 | 1107.780 | 202.630 | 473.782 |
137 | 46.1983 | 4451.114 | 28.137 | -353.894 |
150 | 41.6133 | 6354.747 | 97.801 | -788.352 |
59 | 40.0572 | 127.3136111 | 131.0000425 | 129.1436738 |
63 | 73.7666 | 53.04694444 | 495.68013 | -162.1552229 |
134 | 40.0042 | 4059.813611 | 132.2160772 | -732.6476846 |
79 | 38.7618 | 75.98027778 | 162.3311699 | -111.0583963 |
39 | 39.3117 | 978.6469444 | 148.6210906 | 381.3758988 |
47 | 43.6889 | 542.1136111 | 61.05586113 | 181.9318921 |
54 | 64.5969 | 265.1469444 | 171.4574189 | -213.2168163 |
21 | 65.2548 | 2428.846944 | 189.1195668 | -677.7480963 |
55 | 38.1001 | 233.5802778 | 179.6303569 | 204.8367854 |
21 | 66.9966 | 2428.846944 | 240.0601625 | -763.5898062 |
76 | 64.3793 | 32.68027778 | 165.8061837 | 73.61108708 |
72 | 39.8683 | 2.946944444 | 135.3598451 | -19.97242958 |
48 | 49.3329 | 496.5469444 | 4.708140531 | 48.35093375 |
17 | 38.0247 | 2839.113611 | 181.6571579 | 718.1540988 |
70 | 54.6429 | 0.080277778 | 9.860699031 | -0.88971625 |
71 | 47.4064 | 0.513611111 | 16.77987851 | -2.935699583 |
30 | 50.9659 | 1622.746944 | 0.288181081 | 21.62510042 |
32 | 40.9046 | 1465.613611 | 112.3202535 | 405.7315521 |
145 | 58.1326 | 5582.580278 | 43.95524252 | 495.3621604 |
29 | 37.0958 | 1704.313611 | 207.559488 | 594.7658871 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 4217 | 3090.1635 | 104060.1833 | 9156.8 | 1179.41 |
mean | 70.28 | 51.50 | SSxx | SSyy | SSxy |
sample size , n = 60
here, x̅ = Σx / n= 70.28 ,
ȳ = Σy/n = 51.50
SSxx = Σ(x-x̅)² = 104060.1833
SSxy= Σ(x-x̅)(y-ȳ) = 1179.4
estimated slope , ß1 = SSxy/SSxx = 1179.4
/ 104060.183 = 0.0113
intercept, ß0 = y̅-ß1* x̄ =
50.7061
so, regression line is wages =
50.706 + 0.011
*LOS
--
Ho: ß1= 0
H1: ß1╪ 0
n= 60
alpha = 0.05
estimated std error of slope =Se(ß1) = Se/√Sxx =
12.556 /√ 104060.18
= 0.0389
t stat = estimated slope/std error =ß1 /Se(ß1) =
0.0113 / 0.0389
= 0.2912
t-critical value= 2.002 [excel function:
=T.INV.2T(α,df) ]
Degree of freedom ,df = n-2= 58
p-value = 0.7719
decison : p-value>α , do not reject Ho
Conclusion: do not Reject Ho and conclude that slope is
not significanty different from zero
d)
confidence interval for slope
α= 0.05
t critical value= t α/2 =
2.002 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
12.55568 /√ 104060.18
= 0.039
margin of error ,E= t*std error = 2.002
* 0.039 = 0.078
estimated slope , ß^ = 0.0113
lower confidence limit = estimated slope - margin of error
= 0.0113 - 0.078
= -0.0666
upper confidence limit=estimated slope + margin of error
= 0.0113 + 0.078
= 0.0892