Question

In: Math

Box 1 contains 3 red balls, 5 green balls and 2 white balls. Box 2 contains...

Box 1 contains 3 red balls, 5 green balls and 2 white balls. Box 2 contains 5 red balls, 3 green balls and 1 white ball. One ball of unknown color is transferred from Box 1 to Box 2. (a) What is the probability that a ball drawn at random from Box 2 is green? (b) What is the probability that a ball drawn from Box 1 is not white?

Solutions

Expert Solution

Box 1 contains 3 R, 5 G and 2 W

Box 2 contains 5 R, 3 G and 1 W

Let the color of the ball transferred from Box 1 to Box 2 be .

a)The following probabilities are known,

Let the probability of drawing a green ball from Box 2 be represented as .

The following conditional probabilities are known,

Using total probability theorem,

b)Let the probability of drawing a White ball from Box 1 (after transfer) be represented as .

The following conditional probabilities are known,

Using total probability theorem,

The complement (probability of not drawing a White from Box 1) is


Related Solutions

A box contains 2 ?red, 3 white and 3 green balls. Two balls are drawn out...
A box contains 2 ?red, 3 white and 3 green balls. Two balls are drawn out of the box in succession without replacement. What is the probability that both balls are the same? color?
Box A contains 6 red balls and 3 green balls, whereas box B contains 3 red...
Box A contains 6 red balls and 3 green balls, whereas box B contains 3 red ball and 15 green balls. Stage one. One box is selected at random in such a way that box A is selected with probability 1/5 and box B is selected with probability 4/5. Stage two. Finally, suppose that two balls are selected at random with replacement from the box selected at stage one. g) What is the probability that both balls are red? h)...
3. Box A contains 6 red balls and 3 green balls, whereas box B contains 3...
3. Box A contains 6 red balls and 3 green balls, whereas box B contains 3 red ball and 15 green balls. Stage one:One box is selected at random in such a way that box A is selected with probability 1/5 and box B is selected with probability 4/5. Stage two: First, suppose that 1 ball is selected at random from the box selected at stage one. a) What is the probability that the ball is red? b) Given that...
A box contains 8 red balls, 4 green balls, and 3 blue balls. You pull 2...
A box contains 8 red balls, 4 green balls, and 3 blue balls. You pull 2 balls from the box (one at a time) WITHOUT replacement. **LEAVE ALL ANSWERS AS FRACTIONS** Find the probability of the following: a.) P(Red on 1st ball AND Red on 2nd ball) = b.) P(Green on 1st ball AND Red on 2nd ball) = c.) P(Blue on 1st ball AND Green on 2nd ball) = d.) What is the probability of drawing 2 green balls...
A box contains 4 red balls, 3 yellow balls, and 3 green balls. You will reach...
A box contains 4 red balls, 3 yellow balls, and 3 green balls. You will reach into the box and blindly select a ball, take it out, and then place it to one side. You will then repeat the experiment, without putting the first ball back. Calculate the probability that the two balls you selected include a yellow one and a green one. 3. Consider a binomially distributed random variable constructed from a series of 8 trials with a 60%...
There are three types of balls in a box: 5 red, 3 blue and 2 green....
There are three types of balls in a box: 5 red, 3 blue and 2 green. You draw 3 balls at once (without replacement) from this box and record: Y1=the # of red balls, Y2=the # of blue balls that you drew. Find the joint probability distribution of Y1, Y2, by first writing the possible values for y1, y2 in rows and columns and then filling in the probabilities within this table. Then check that the sum of the entries...
Bag 1 contains 3 red balls and 7 green balls. Bag 2 contains 8 red balls...
Bag 1 contains 3 red balls and 7 green balls. Bag 2 contains 8 red balls and 4 green balls. Bag 3 contains 5 red balls and 11 green balls. Bag 1 is chosen twice as often as either Bag 2 or Bag 3 (which have the same probability of being chosen). After a bag is chosen, a ball is chosen at random from that bag. Calculate the probability that: a) a red ball is chosen b) a red ball...
1. Box #1 contains 4 red chips and 1 white chip. Box #2 contains 3 red,...
1. Box #1 contains 4 red chips and 1 white chip. Box #2 contains 3 red, 1 black and 6 white chips. The experiment consists of randomly picking a box, then randomly picking a chip from it. Find the probability that: (a) A red chip is drawn from Box #1: ___________________________________ (b) A red chip is drawn, given that Box #1 was picked: ________________________________ (c) Box #1 was picked, given that the chip is black: _____________________________
3. A box contains 5 red balls, 3 blue balls and 1 black balls. Take two...
3. A box contains 5 red balls, 3 blue balls and 1 black balls. Take two balls out randomly. Let X be number of red balls and Y be the number of black balls. (1) Find the joint distribution of (X, Y ). (2) Find P(X = 1|Y = 1).
1) An urn contains 10 balls, 2 red, 5 blue, and 3 green balls. Take out...
1) An urn contains 10 balls, 2 red, 5 blue, and 3 green balls. Take out 3 balls at a random, without replacement. You win $2 for each green ball you select and lose $3 for each red ball you select. Let the random variable X denote the amount you win, determine the probability mass function of X. 2) Each of the 60 students in a class belongs to exactly one of the three groups A,B, or C. The membership...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT