Question

In: Math

Suppose there is a normally distributed population which has a mean of μ = 440and a...

Suppose there is a normally distributed population which has a mean of μ = 440and a standard deviation of σ = 60. (15p)

1.What portion of a normal distribution is below 295?

2. What z-score would correspond to a raw score of 260?

3. What raw score would correspond to a z score of -3.5?

4. If we randomly select one score from this population, what is the probability that will be less than 550?

5. If we randomly select one score from this population, what is the probability that will be greater than 580?

Solutions

Expert Solution

Solution :

Given that ,

mean = = 440

standard deviation = = 60

1) P(x < 295) = P[(x - ) / < (295 - 440) / 60]

= P(z < -2.42)

Using z table,

= 0.0078

2) x = 260

Using z-score formula,

z = x - /   

z = 260 - 440 / 60

z = -3.00

3) z = -3.5

Using raw-score formula,

x = z * +

x = -3.5 * 60 + 440

x = 230

4) P(x < 550) = P[(x - ) / < (550 - 440) / 60]

= P(z < 1.83)

Using z table,

= 0.9664

5) P(x > 580 ) = 1 - p( x< 580)

=1- p P[(x - ) / < (580 - 440) / 60 ]

=1- P(z < 2.33)

Using z table,

= 1 - 0.9901

= 0.0099


Related Solutions

Assume that a population is normally distributed with a population mean of μ = 8 and...
Assume that a population is normally distributed with a population mean of μ = 8 and a population standard deviation of s = 2. [Notation: X ~ N(8,2) ] Use the Unit Normal Table to answer the following questions. (I suggest you draw a picture of the normal curve when answering these questions.) 8. Let X=4 Compute the z-score of X. For that z-score: a. What proportion of the area under the Unit Normal Curve is in the tail? b....
Assume that a population is normally distributed with a population mean of μ = 8 and...
Assume that a population is normally distributed with a population mean of μ = 8 and a population standard deviation of s = 2. [Notation: X ~ N(8,2) ] Use the Unit Normal Table to answer the following questions. (I suggest you draw a picture of the normal curve when answering these questions.) 8. Let X=7 Compute the z-score of X. For that z-score: a. What proportion of the area under the Unit Normal Curve is in the tail? b....
Suppose µ is the mean of a normally distributed population for which the standard deviation is...
Suppose µ is the mean of a normally distributed population for which the standard deviation is known to be 3.5. The hypotheses H0 : µ = 10 Ha : µ 6= 10 are to be tested using a random sample of size 25 from the population. The power of an 0.05 level test when µ = 12 is closest to
Suppose a population of scores x is normally distributed with μ = 16 and σ =...
Suppose a population of scores x is normally distributed with μ = 16 and σ = 5. Use the standard normal distribution to find the probability indicated. (Round your answer to four decimal places.) Pr(16 ≤ x ≤ 18.6)
Suppose that a population is known to be normally distributed with μ =2,400 and σ=220. If...
Suppose that a population is known to be normally distributed with μ =2,400 and σ=220. If a random sample of size n=88 is​ selected, calculate the probability that the sample mean will exceed 2,500 ​P(x > 2,500​)= ​(Round to four decimal places as​ needed.)
Suppose a population of scores x is normally distributed with μ = 16 and σ =...
Suppose a population of scores x is normally distributed with μ = 16 and σ = 5. Use the standard normal distribution to find the probability indicated. (Round your answer to four decimal places.) Pr(16 ≤ x ≤ 18.3) You may need to use the table of areas under the standard normal curve from the appendix. Also, Use the table of areas under the standard normal curve to find the probability that a z-score from the standard normal distribution will...
Assume Y is a normally distributed population with unknown mean, μ, and σ = 25. If...
Assume Y is a normally distributed population with unknown mean, μ, and σ = 25. If we desire to test  H o: μ = 200 against H 1: μ < 200, (a.) What test statistic would you use for this test? (b.)What is the sampling distribution of the test statistic? (c.) Suppose we use a critical value of 195 for the scenario described. What is the level of significance of the resulting test? (d.) Staying with a critical value of 195,...
A random sample is drawn from a normally distributed population with mean μ = 33 and...
A random sample is drawn from a normally distributed population with mean μ = 33 and standard deviation σ = 2.1. Use Table 1. a. Are the sampling distributions of the sample mean with n = 41 and n = 82 normally distributed? Yes No b. Can you use the standard normal distribution to calculate the probability that the sample mean is less than 33.6 for both sample sizes? Yes No c. Calculate the above probabilities for both sample sizes....
From a normally-distributed population of scores with a mean of μ, 9 scores are sampled at...
From a normally-distributed population of scores with a mean of μ, 9 scores are sampled at random. The mean and standard deviation for this sample of 9 scores are found to be 12 and 4, respectively. μ is unlikely ( = :05) to be less than _______ or greater than______. (Hint; t-dist test)
A random sample is drawn from a normally distributed population with mean μ = 27 and...
A random sample is drawn from a normally distributed population with mean μ = 27 and standard deviation σ = 2.1. [You may find it useful to reference the z table.] a. Are the sampling distribution of the sample mean with n = 35 and n = 70 normally distributed? Yes, both the sample means will have a normal distribution. No, both the sample means will not have a normal distribution. No, only the sample mean with n = 35...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT