In: Math
Consider a new hotel deciding on cleaning staff hiring for the upcoming season. Cleaning times depend on whether it is a stay-over room or a check-out. Suppose that a guest will check-out on a given day with probability 40%. From your experience in similar hotels you estimate that a stay-over room cleaning time is well-described with normal distribution with average 15 minutes and standard deviation 1 minute. Check-out room cleaning time is also normal but with average 30 minutes and standard deviation 10 minutes.
i. Consider an occupied room (stay-over or check-out), what is the average cleaning time for such a room?
ii. Find the variance for the cleaning time for an occupied room.
iii. Suppose that the hotel has 200 rooms, and you estimate that on a given day a room will be occupied with probability 90%. Only occupied rooms need cleaning. Find the average total cleaning time for the hotel. iv. Find the variance of the total cleaning time for the hotel.
Hints: remember var(X) = EX^2 − (EX)^2 .
    Let S be the stayover room cleaning
time          
           
   
   S follows normal distribution with mean µs and
standard deviation σs      
           
       
   where    μs = 15 minutes  
    σs = 1 minute      
       
          
           
       
   Let C be the check out room cleaning time  
           
           
   C follows normal distribution with mean µy and
standard deviation σy      
           
       
   where    μc = 30 minutes  
    σc = 10 minutes      
       
          
           
       
1)   Let O be the cleaning time for an occupied
room          
           
   
   Guests check out with 40% of the time  
           
           
   Thus guests stay over 60% of the time  
           
           
   Hence the cleaning time for occupied room
is          
           
   
   O = 0.4 * C + 0.6 * S      
           
       
   Then O follows normal distribution with mean µ and
standard deviation σ      
           
       
   where      
           
       
   μ = 0.4 * 30 + 0.6 * 15 = 21  
           
           
   σ =           
           
   
          
           
       
   σ = 4.0448      
           
       
   μ = 21      
           
       
   Average cleaning time for an occupied room =
21 minutes      
           
       
          
           
       
2)   As calculated in (1), variance for an occupied room
is           
           
   
   σ2 = (4.0448)2 =
16.36          
           
   
   Variance for an occupied room = 16.36
minutes          
           
   
          
           
       
3)   O is the cleaning time for the occupied
rooms          
           
   
   O follows normal distribution with mean µ and standard
deviation σ          
           
   
   where    μ = 21 minutes  
    σ = 4.0448 minutes  
           
   Since 90% of rooms are occupied,  
           
           
   Average total cleaning time for 200 rooms =
0.9*200*21          
           
   
   Average total cleaning time for 200 rooms =
3780 minutes      
           
       
          
           
       
          
           
       
4)   Let T be the total cleaning time  
           
           
   T = 0.9*200*O = 180*O      
           
       
   Var(T) = (180)2 * V(O)  
           
           
  
              
= 32400 * 16.36          
           
   
  
              
= 530064          
           
   
   Variance of total cleaning time for 200 rooms =
530064 minutes