In: Math
A recent headline announced / impeachment causes a dip in a
President’s Approval Rating.
This conclusion was based on a University poll of 100 adults. In
the poll, 41.1% of respondents approved of the president’s job
performance.
(a) Based on this poll, what is the probability that more than 50%
of the population approve of the president’s job performance?
(b) Form a 90% confidence interval for this estimate.
(c) Assume we know without sampling error the population support was 42% before the impeachment story broke in September. Test whether the impeachment proceedings have actually caused a dip in approval from the 42% baseline at the .05 significance level.
a),p=   0.411      
           
   
n=   100      
           
   
          
           
   
std error , SE = √( p(1-p)/n ) =    0.0492  
           
       
          
           
   
Z=( p̂ - p )/SE= (   0.5   -  
0.411   ) /    0.0492   =  
1.809
P ( p̂ >    0.5   ) =P(Z > ( p̂ - p )/SE)
=          
       
          
           
   
=P(Z >   1.809   ) =   
0.0352      
       
b)
Level of Significance,   α =   
0.10          
Sample Size,   n =    100  
       
          
       
Sample Proportion ,    p̂ = 0.4110  
       
z -value =   Zα/2 =    1.645   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0492          
margin of error , E = Z*SE =    1.645  
*   0.0492   =   0.0809
          
       
90%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.411  
-   0.0809   =   0.3301
Interval Upper Limit = p̂ + E =   0.411  
+   0.0809   =   0.4919
          
       
90%   confidence interval is (  
0.3301   < p <    0.4919  
)
c)
Ho :   p =    0.42  
           
   
H1 :   p <   0.42  
    (Left tail test)      
   
          
           
   
Level of Significance,   α =   
0.05          
       
Number of Items of Interest,   x =  
41.1          
       
Sample Size,   n =    100  
           
   
          
           
   
Sample Proportion ,    p̂ = x/n =   
0.4110          
       
          
           
   
Standard Error ,    SE = √( p(1-p)/n ) =   
0.0494          
       
Z Test Statistic = ( p̂-p)/SE = (  
0.4110   -   0.42   ) /  
0.0494   =   -0.1823
          
           
   
  
p-Value   =   0.4277   [excel
function =NORMSDIST(z)]      
       
Decision:   p value>α ,do not reject null
hypothesis           
       
   
There is not enough evidence that  the impeachment
proceedings have actually caused a dip in approval from the 42%
baseline at the .05 significance leve