Question

In: Math

A recent headline announced / impeachment causes a dip in a President’s Approval Rating. This conclusion...

A recent headline announced / impeachment causes a dip in a President’s Approval Rating.
This conclusion was based on a University poll of 100 adults. In the poll, 41.1% of respondents approved of the president’s job performance.


(a) Based on this poll, what is the probability that more than 50% of the population approve of the president’s job performance?
(b) Form a 90% confidence interval for this estimate.

(c) Assume we know without sampling error the population support was 42% before the impeachment story broke in September. Test whether the impeachment proceedings have actually caused a dip in approval from the 42% baseline at the .05 significance level.

Solutions

Expert Solution

a),p=   0.411                      
n=   100                      
                          
std error , SE = √( p(1-p)/n ) =    0.0492                      
                          
Z=( p̂ - p )/SE= (   0.5   -   0.411   ) /    0.0492   =   1.809
P ( p̂ >    0.5   ) =P(Z > ( p̂ - p )/SE) =                  
                          
=P(Z >   1.809   ) =    0.0352              

b)

Level of Significance,   α =    0.10          
Sample Size,   n =    100          
                  
Sample Proportion ,    p̂ = 0.4110          
z -value =   Zα/2 =    1.645   [excel formula =NORMSINV(α/2)]      
                  
Standard Error ,    SE = √[p̂(1-p̂)/n] =    0.0492          
margin of error , E = Z*SE =    1.645   *   0.0492   =   0.0809
                  
90%   Confidence Interval is              
Interval Lower Limit = p̂ - E =    0.411   -   0.0809   =   0.3301
Interval Upper Limit = p̂ + E =   0.411   +   0.0809   =   0.4919
                  
90%   confidence interval is (   0.3301   < p <    0.4919   )

c)

Ho :   p =    0.42                  
H1 :   p <   0.42       (Left tail test)          
                          
Level of Significance,   α =    0.05                  
Number of Items of Interest,   x =   41.1                  
Sample Size,   n =    100                  
                          
Sample Proportion ,    p̂ = x/n =    0.4110                  
                          
Standard Error ,    SE = √( p(1-p)/n ) =    0.0494                  
Z Test Statistic = ( p̂-p)/SE = (   0.4110   -   0.42   ) /   0.0494   =   -0.1823
                          
  
p-Value   =   0.4277   [excel function =NORMSDIST(z)]              
Decision:   p value>α ,do not reject null hypothesis                       
There is not enough evidence that  the impeachment proceedings have actually caused a dip in approval from the 42% baseline at the .05 significance leve     


Related Solutions

In a recent poll of 900 randomly selected​ adults, a​ president's approval rating stood at 52%....
In a recent poll of 900 randomly selected​ adults, a​ president's approval rating stood at 52%. a) Find the 90% confidence interval as a true proportion. (____,_____) b) Based on the confidence interval, can the null hypothesis be rejected? __________ the null hypothesis 1. rejected 2. fail to reject
In a recent speech, the governor of a neighboring state announced: “One of the biggest causes...
In a recent speech, the governor of a neighboring state announced: “One of the biggest causes of juvenile delinquency in this state is the high rate of unemployment among 16 to 19-year old employees. The low wages offered by employers in the state have given fewer teenagers the incentive to find summer employment. Instead of working all summer, the way we used to, today’s teenagers slack off and cause trouble. To address this problem, I propose to raise the state’s...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT