Question

In: Statistics and Probability

For a standard deck of playing cards, what is the expected number of Diamonds that will...

For a standard deck of playing cards, what is the expected number of Diamonds that will appear in a random 5 card hand?

Solutions

Expert Solution

Let define a random variable X that represent the number of diamonds in hand, when we drawn 5 card from a standard deck of 52 cards.

In a standard deck of 52 cards there are 13 diamonds and 39 others cards

So, the random variable X cancan takes the values 0,1,2,3,4,5

If X=0 then  

If X=1 then  

If X=2 then

If X=3 then

If X=4 then

If X=5 then

Now we need to find the expected value of the random variable X, i.e, E(X)

The expected value of X is 1.25


Related Solutions

Hyram has a standard deck of 52 playing cards. The deck contains 4 suits (hearts, diamonds,...
Hyram has a standard deck of 52 playing cards. The deck contains 4 suits (hearts, diamonds, clubs, and spades), and each suit contains 13 cards labeled 2 through 10, as well as jack, queen, king, and ace. Four friends are trying to determine some probabilities related to randomly drawing a single card from the deck. Consider the following events, and then answer the question. A: drawing a diamond B: drawing a queen Which friend provided the correct analysis? Samantha says...
An ordinary deck of playing cards has 52 cards. There are four suits-​spades, ​hearts, diamonds, and...
An ordinary deck of playing cards has 52 cards. There are four suits-​spades, ​hearts, diamonds, and clubs with 13 cards in each suit. Spades and clubs are​ black; hearts and diamonds are red. If one of these cards is selected at​ random, what is the probability for a nine, black, not a heart The probability of selecting a nine is: The probability of selecting a black card is: The probability of selecting a card that is not heart is: (type...
The following question involves a standard deck of 52 playing cards. In such a deck of...
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
A hand of 13 cards is dealt from a standard deck of 52 playing cards. What...
A hand of 13 cards is dealt from a standard deck of 52 playing cards. What is the probability that it contains more spades (♠) than hearts (♡) given that the hand contains at least two spades?
In a standard deck of cards, there are 4 suits (Clubs, Hearts, Diamonds, and Spades) and...
In a standard deck of cards, there are 4 suits (Clubs, Hearts, Diamonds, and Spades) and 13 ranks of each suit (2 through 10, Jack, Queen, King, Ace). The diamonds and hearts are red, spades and clubs are black. Imagine drawing cards (without replacement) from a shuffled deck, so that any card in the deck is equally likely to be drawn. What is the probability that (a) If you draw 5 cards, no cards in your hand are red? (b)...
In a standard deck of cards, there are 4 suits (Clubs, Hearts, Diamonds, and Spades) and...
In a standard deck of cards, there are 4 suits (Clubs, Hearts, Diamonds, and Spades) and 13 ranks of each suit (2 through 10, Jack, Queen, King, Ace). The diamonds and hearts are red, spades and clubs are black. Imagine drawing cards (without replacement) from a shuffled deck, so that any card in the deck is equally likely to be drawn. What is the probability that (a) If you draw 2 cards, you get both • an Ace, • a...
he following question involves a standard deck of 52 playing cards. In such a deck of...
he following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
You draw cards from a standard deck of 52 playing cards. There are 12 “face cards”...
You draw cards from a standard deck of 52 playing cards. There are 12 “face cards” in the deck (J, Q, or K). Let X be the number of drawings (with replacement) it takes until you get your first face card. Let Y be the number of drawings (with replacement) it takes until you get your fifth face card. Let Z be the number of face cards removed if you draw 10 cards without replacement. (a) Calculate P(X = 5)....
In a standard deck of 52 cards, there are four suits (clubs, hearts, diamonds and spades)...
In a standard deck of 52 cards, there are four suits (clubs, hearts, diamonds and spades) and 13 cards of each suit. What is the probability of randomly selecting two cards, which turn out to be the same suit? (Answer to 2 digits after the decimal point.)
You are dealt a hand of five cards from a standard deck of 52 playing cards....
You are dealt a hand of five cards from a standard deck of 52 playing cards. Calculate the probability of the given type of hand. (None of them is a recognized poker hand.) (a) Mixed royal meeting: One of each type or royal card (king, queen, jack, ace) of different suites, and a last non-royal card (neither king, queen, jack or ace). Enter a formula. Examples: C(5,3)C(33,3)/C(14,2) C(5,3)C(33,3)C(4,1)/C(100,100) (b) Red and black double royal wedding: A red king, a red...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT