Question

In: Statistics and Probability

Babies' birth weight follows a normal law, with an average of 6 pounds and a standard...

Babies' birth weight follows a normal law, with an average of 6 pounds and a standard deviation 1 pound.

a) Calculate the probability of a newborn baby weighing more than 5 pounds.

b) Out of 50 babies, what is the probability that at least 47 of them weigh more than 5 pounds?

c) In order to eradicate obesity, a dictator decides to eliminate 10% of babies at birth, 10% heavier. What is the weight of the largest surviving baby?

Solutions

Expert Solution

It is given that the birth weight folows a Normal distribution with .

a). The probability of a newborn baby weighing more than 5 pounds.

We know that the standard Normal variate corersponding to 5 is

Theerfore

  

  

The probability of a newborn baby weighing more than 5 pounds=0.8413.

b) Out of 50 babies, what is the probability that at least 47 of them weigh more than 5 pounds?

We know that The probability of a newborn baby weighing more than 5 pounds=0.8413 and let us call it as a success(p) for the purpose of the Binomial pouplation. therefore the The probability of a newborn baby weighing less than 5 pounds(1-p)=1-0.8413=0.1587.

We have n=50 and we need to find out the

I had made the EXCEL sheet to calculate the quantities needed for this. You may delete it while submitting or can leave it if you need.

x n-x p q p*q ncx pb
47 3 0.000297 0.003997 1.18692E-06 19600 0.023264
48 2 0.00025 0.025186 6.29211E-06 1225 0.007708
49 1 0.00021 0.1587 3.33557E-05 50 0.001668
50 0 0.000177 1 0.000176825 1 0.000177
0.032816

Therefore,Out of 50 babies, the probability that at least 47 of them weigh more than 5 pounds =0.0328.

(c) Eliminate 10% of babies at birth, 10% heavier. What is the weight of the largest surviving baby?

Here we need to find out the such that

From the tables r EXCEL function NORM.S.INV(0.9), we can find out this value as 1.2816.

Therefore is the weight of the largest surviving baby.

  


Related Solutions

In the U.S., newborn babies weight an average of 7.2 pounds (μ). The standard deviation is...
In the U.S., newborn babies weight an average of 7.2 pounds (μ). The standard deviation is 1.22 pounds (σ). The population distribution of birth weights is roughly Normal. You draw a simple random sample of 60 births from the population and find that the sample mean is 7.4 pounds. NOTE: Use the most precise estimate of z or z* you can in these problems as in all your written results. Draw a picture of the distribution, label, and shade as...
The weight of chihuahuas follows a Normal distribution with mean 10.4 pounds and with a standard...
The weight of chihuahuas follows a Normal distribution with mean 10.4 pounds and with a standard deviation of 2.1 pounds. A) What percent of the dogs weigh more than 12 pounds? B) What percent of the dogs weight between 9 and 12 pounds? C) 50% of the dogs weigh more than what weight? D) 75% of the dogs weight more than what weight?
The weight of freshly born babies approximates a normal distribution. The average weight of all babies...
The weight of freshly born babies approximates a normal distribution. The average weight of all babies born is 7.5 lbs (pounds), with a standard deviation of 2.5 lbs. What proportion of babies will be lighter than 12.1 lbs?
The weight of freshly born babies approximates a normal distribution. The average weight of all babies...
The weight of freshly born babies approximates a normal distribution. The average weight of all babies born is 7.5 lbs (pounds), with a standard deviation of 2.5 lbs. What proportion of babies will be between 6.5 lbs and 11.5 lbs?
In a sample of 51 babies, the mean weight is 21 pounds and the standard deviation...
In a sample of 51 babies, the mean weight is 21 pounds and the standard deviation is 4 pounds. Calculate a 95% confidence interval for the true mean weight of babies. Suppose we are interested in testing if the true mean weight of babies is 19.4 vs the alternative that it is not 19.4 with an alpha level of .05. Would this test be significant? Explain your answer. Perform the t test and use a t-table to get the p-value
The average weight of 237 babies born at Swedish hospital last year was 7.04 pounds with...
The average weight of 237 babies born at Swedish hospital last year was 7.04 pounds with a standard deviation of .42 pounds. Generate the population and then take two samples via the following steps. Compare their means and standard deviations. Step 1: Open an excel worksheet and enter “population” in A1, “number” in A2, birth in B1 and “weights” in B2. Type 1 in A3 and ENTER. Step 2: Make A3 your active cell. From the Ribbon select the following...
A researcher is testing the hypothesis that baby weight (in pounds) at 6 months after birth...
A researcher is testing the hypothesis that baby weight (in pounds) at 6 months after birth is related to breastfeeding (in oz). The regression equation is Weight = 6.5 + .48 * Milk/day. The Standard Error (SE) of the slope is 0.13, and the data were gathered from a sample of 320 babies (Alpha level is set at 0.05.) Which one of the following statements is INCORRECT? Hypothesis testing for a significant slope shows evidence that Milk/day is a statistically...
A sample of the birth weight for 25 newborn male babies was taken from babies whose...
A sample of the birth weight for 25 newborn male babies was taken from babies whose mother took prenatal vitamin supplements. The results of the study showed an average birth weight of 3.953 kg and a standard deviation of 0.552 kg. The claim is that taking vitamin supplements increase the baby’s birth weight. The mean birth weight for all male babies is 3.58 kg 1. What can you conclude by comparing the 95% Confidence Interval and the mean weigh of...
For an adult male the average weight is 179 pounds and the standard deviation is 29.4...
For an adult male the average weight is 179 pounds and the standard deviation is 29.4 pounds. We can assume that the distribution is Normal (Gaussian). Answer the following questions either via simulations (use 10000 points) or via “rule of thumbs”. I). What is the approximate probability that a randomly picked adult male will weigh more than 180 pounds? Pick the closest answer. (6.66 points) a. About 15% b. About 30% c. About 50% d. About 65% II) What would...
In​ Louisiana, the average weight of an adult allegator is 790​ pounds, with standard deviation of...
In​ Louisiana, the average weight of an adult allegator is 790​ pounds, with standard deviation of 200 pounds. What is the probability that the average wieght of a sample​(of adults​ allegators) of size 100 will be grater than 820​ pounds? A.0.06 B.0.07 C.0.93 D.0.90 E.0.05
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT