Question

In: Statistics and Probability

In a sample of 51 babies, the mean weight is 21 pounds and the standard deviation...

In a sample of 51 babies, the mean weight is 21 pounds and the standard deviation is 4 pounds.

  1. Calculate a 95% confidence interval for the true mean weight of babies. Suppose we are interested in testing if the true mean weight of babies is 19.4 vs the alternative that it is not 19.4 with an alpha level of .05. Would this test be significant? Explain your answer.

Perform the t test and use a t-table to get the p-value

Solutions

Expert Solution

a)

t critical value at 0.05 level with 50 df = 2.009

95% confidence interval for is

- t * S / sqrt(n) < < + t * S / sqrt(n)

21 - 2.009 * 4 / sqrt(51) < < 21 + 2.009 * 4 / sqrt(51)

19.87 < < 22.13

95% CI is ( 19.87 , 22.13 )

b)

H0: = 19.4

Ha: 19.4

Test statistics

t = - / S / sqrt(n)

= 21 - 19.4 / 4 / sqrt(51)

= 2.86

This is test statistics value.

From T table, with t = 2.86 and df = 50

p-value = 0.0062

Since p-value < 0.05 level, we reject the null hypothesis.

We conclude at 0.05 level that we have sufficient evidence to support the claim.


Related Solutions

In the U.S., newborn babies weight an average of 7.2 pounds (μ). The standard deviation is...
In the U.S., newborn babies weight an average of 7.2 pounds (μ). The standard deviation is 1.22 pounds (σ). The population distribution of birth weights is roughly Normal. You draw a simple random sample of 60 births from the population and find that the sample mean is 7.4 pounds. NOTE: Use the most precise estimate of z or z* you can in these problems as in all your written results. Draw a picture of the distribution, label, and shade as...
Horses in a stable have a mean weight of 950 pounds with a standard deviation of...
Horses in a stable have a mean weight of 950 pounds with a standard deviation of 77 pounds. Weights of horses follow the normal distribution. One horse is selected at random. a. What is the probability that the horse weighs less than 900 pounds? b. What is the probability that the horse weighs more than 1,100 pounds? c. What is the probability that the horse weighs between 900 and 1,100 pounds? d. What weight is the 90th percentile? (round to...
The mean weight of 1-year-old girls is 80 pounds, and the standard deviation is 6 pounds....
The mean weight of 1-year-old girls is 80 pounds, and the standard deviation is 6 pounds. If a sample of 31 girls is selected, what is the probability that their sample mean is between 76.5 and 81.5 pounds? Use your graphing calculator to determine this probability. Enter this answer as a number rounded to four digits after the decimal point.
The weight of newborn babies are normally distributed with a mean of 7.62 pounds and a...
The weight of newborn babies are normally distributed with a mean of 7.62 pounds and a standard deviation of 0.61 pounds. If the weight of 22 newborn are randomly selected, what's the probability that their mean weight is more than 7.23 pounds? Round to 4-decimal places
The mean weight of a 2-year old is 27.5 pounds with a standard deviation of 2.3...
The mean weight of a 2-year old is 27.5 pounds with a standard deviation of 2.3 pounds, although some 2-year olds weigh as much as 39 pounds. A health official randomly selects the medical records of 50 2-year olds to study. What is the probability the mean weight of the health official’s sample is more than 28.5 pounds?    A) 0.001 B) 0.332 C) 0.668 D) 0.999 E) This cannot be determined because the distribution is skewed right due to...
Columbia manufactures bowling balls with a mean weight of 14.6 pounds and a standard deviation of...
Columbia manufactures bowling balls with a mean weight of 14.6 pounds and a standard deviation of 3 pounds. A bowling ball is too heavy to use and is discarded if it weighs over 16 pounds. Assume that the weights of bowling balls manufactured by Columbia are normally distributed (Round probabilities to four decimals) a) What is the probability that a randomly selected bowling ball is discarded due to being too heavy to use? b) The lightest 7% of the bowling...
Columbia manufactures bowling balls with a mean weight of 14.5 pounds and a standard deviation of...
Columbia manufactures bowling balls with a mean weight of 14.5 pounds and a standard deviation of 2.2 pounds. A bowling ball is too heavy to use and is discarded if it weighs over 16 pounds. Assume that the weights of bowling balls manufactured by Columbia are normally distributed. Round probabilities to four decimal places. a) What is the probability that a randomly selected bowling ball is discarded due to being too heavy to use? b) The lightest 5% of the...
Columbia manufactures bowling balls with a mean weight of 14.7 pounds and a standard deviation of...
Columbia manufactures bowling balls with a mean weight of 14.7 pounds and a standard deviation of 2.5 pounds. A bowling ball is too heavy to use and is discarded if it weighs over 16 pounds. Assume that the weights of bowling balls manufactured by Columbia are normally distributed. Round probabilities to four decimal places. a) What is the probability that a randomly selected bowling ball is discarded due to being too heavy to use? b) The lightest 5% of the...
The weight of Bluefin Tuna is approximately normally distributed with mean 32 pounds and standard deviation...
The weight of Bluefin Tuna is approximately normally distributed with mean 32 pounds and standard deviation 5 pounds. Answer the following questions: 1a. How much does a fish have to weigh to fall into the 75 percentile? (Inverse) a) 32.37 b) 35.37 c) 32.75 d) 38.7 1b. The record catch for a Tuna is 511 pounds. What are the chances of that happening? Find the z score. a) 504.6 b) 95.8 c) 94 d) 100 1c. In the sample of...
A sample of 7 adult elephants had an average weight of 11900 pounds. The standard deviation...
A sample of 7 adult elephants had an average weight of 11900 pounds. The standard deviation for the sample was 24 pounds. What is the 99% confidence interval of the population mean for the weights of adult elephants? Assume that the variable is normally distributed.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT