Question

In: Physics

The figure below shows a bar of mass m = 0.220 kg that can slide without...

uploaded image

The figure below shows a bar of mass m = 0.220 kg that can slide without friction on a pair of rails separated by a distance script l = 1.20 m and located on an inclined plane that makes an angle θ = 34.0° with respect to the ground. The resistance of the resistor is R = 1.20 Ω and a uniform magnetic field of magnitude B = 0.500 T is directed downward, perpendicular to the ground, over the entire region through which the bar moves. With what constant speed v does the bar slide along the rails?

Solutions

Expert Solution


Related Solutions

The figure below shows a bar of mass m = 0.240 kg that can slide without...
The figure below shows a bar of mass m = 0.240 kg that can slide without friction on a pair of rails separated by a distance = 1.20 m and located on an inclined plane that makes an angle θ = 29.0° with respect to the ground. The resistance of the resistor is R = 2.20 Ω and a uniform magnetic field of magnitude B = 0.500 T is directed downward, perpendicular to the ground, over the entire region through...
A bar of mass m = 0.200 kg slide without friction on a pair of rails...
A bar of mass m = 0.200 kg slide without friction on a pair of rails separated by a distance at the length of 1.20 m. The pair of rails was located on an inclined plane making an angle of 25 degrees with respect to the ground. The rails were connected by a resistor at the top of the incline. The resistance of the resistor is R= 1 Ohm, and a uniform magnetic field of magnitude B = 0.500 T...
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in...
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in the positive direction) collides head-on and elastically with another ball initially at rest. Afterward the incoming softball bounces backward with a speed of 6.4 m/s. (a) Calculate the velocity of the target ball after the collision. (b) Calculate the mass of the target ball
As shown in the figure below, a box of mass m = 68.0 kg (initially at...
As shown in the figure below, a box of mass m = 68.0 kg (initially at rest) is pushed a distance d = 91.0 m across a rough warehouse floor by an applied force of FA = 226 N directed at an angle of 30.0° below the horizontal. The coefficient of kinetic friction between the floor and the box is 0.100. Determine the following. (For parts (a) through (d), give your answer to the nearest multiple of 10.) (d) work...
Figure 8-31 shows a ball with mass m ? 0.341 kg attached to the end of...
Figure 8-31 shows a ball with mass m ? 0.341 kg attached to the end of a thin rod with length L ? 0.452 m and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically up position, with zero speed...
The diagram below shows a block of mass m = 2.00 kg on a frictionless horizontal...
  The diagram below shows a block of mass m = 2.00 kg on a frictionless horizontal surface, as seen from above. Three forces of magnitudes F1 = 4.00 N, F 2 = 6.00 N, and F 3 = 8.00 N are applied to the block, initially at rest on the surface, at angles shown on the diagram. In this problem, you will determine the resultant (total) force vector from the combination of the three individual force vectors. All angles...
The figure shows an initially stationary block of mass m on a floor. A force of...
The figure shows an initially stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle θ = 20°. What is the magnitude of the acceleration of the block across the floor if (a) μs = 0.630 and μk = 0.530 and (b) μs = 0.430 and μk = 0.320? (a) Number Enter your answer in accordance to item (a) of the question statement Units Choose the answer from the menu in...
The figure shows an initially stationary block of mass m on a floor. A force of...
The figure shows an initially stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle ? = 20
The figure shows an initially stationary block of mass m on a floor. A force of...
The figure shows an initially stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle ? = 20
Block A in the figure below has mass 1.30 kg , and block B has mass...
Block A in the figure below has mass 1.30 kg , and block B has mass 2.85 kg . The blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. Block B acquires a speed of 1.20 m/s . Part A What is the final speed of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT