In: Statistics and Probability
Using Normal Approximation to Binomial
Mean = n * P = ( 500 * 0.39 ) = 195
Variance = n * P * Q = ( 500 * 0.39 * 0.61 ) = 118.95
Standard deviation = √(variance) = √(118.95) = 10.9064
P ( X <= 200 )
Using continuity correction
P ( X < n + 0.5 ) = P ( X < 200 + 0.5 ) = P ( X < 200.5
)
X ~ N ( µ = 195 , σ = 10.9064 )
P ( X < 200.5 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 200.5 - 195 ) / 10.9064
Z = 0.5
P ( ( X - µ ) / σ ) < ( 200.5 - 195 ) / 10.9064 )
P ( X < 200.5 ) = P ( Z < 0.5 )
P ( X < 200.5 ) = 0.6915
Part b)
Sampling distribution of p̂ is approximately normal if np
>=10 and n (1-p) >= 10
n * p = 500 * 0.39 = 195
n * (1 - p ) = 500 * (1 - 0.39) = 305
Mean =
= p = 0.39
Standard deviation =
= 0.021813
X ~ N ( µ = 0.39 , σ = 0.021813 )
P ( 0.4 < X < 0.45 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 0.4 - 0.39 ) / 0.021813
Z = 0.46
Z = ( 0.45 - 0.39 ) / 0.021813
Z = 2.75
P ( 0.46 < Z < 2.75 )
P ( 0.4 < X < 0.45 ) = P ( Z < 2.75 ) - P ( Z < 0.46
)
P ( 0.4 < X < 0.45 ) = 0.997 - 0.6772
P ( 0.4 < X < 0.45 ) = 0.3198
Part c)
P ( X >= 210 )
Using continuity correction
P ( X > n - 0.5 ) = P ( X > 210 - 0.5 ) =P ( X > 209.5
)
X ~ N ( µ = 195 , σ = 10.9064 )
P ( X > 209.5 ) = 1 - P ( X < 209.5 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 209.5 - 195 ) / 10.9064
Z = 1.33
P ( ( X - µ ) / σ ) > ( 209.5 - 195 ) / 10.9064 )
P ( Z > 1.33 )
P ( X > 209.5 ) = 1 - P ( Z < 1.33 )
P ( X > 209.5 ) = 1 - 0.9082
P ( X > 209.5 ) = 0.0918
It is not unusual, because probability is more than 0.05.