In: Math
Traditional definition of independence says that events A and B
are
independent if and only if P(A n B)=P(A)×P(B). Show that P(A n
B)=P(A)×P(B) if
and only if
a. P(A n B’) = P(A) × P(B’)b. P(A’ n B’) = P(A’) × P(B’)
You may use these without proof in your solutions:
o P(A n B’) = P(A) – P(A n B). [This can be proven by first showing
that
(A ∩ B ′ ) ∪̇ (A ∩ B) = A and using the Addition Rule.]
o P(A n B) = 1 – P(A’ n B’). [This can be proven by noting that
under de
Morgan’s Law, (A n B)’ = A’ n B’.]
Solution
Back-up Theory
P(A ∩ B') = P(A) – P(A ∩ B) ..................................................................................................... (1)
P(A ∪ B) = 1 – P(A' ∩ B') ..................................................................................................... (2)
P(A ∪ B) = P(A) + P(B) - P(A ∩ B) ...................................................................................... (2b)
Now, to work out the solution,
Part 1 sub-part (a)
Given P(A ∩ B) = P(A) x P(B), .............................................................................................. (3a)
to show P(A ∩ B') = P(A) x P(B') ......................................................................................... (3b)
Now, vide (1), LHS of (3b)
P(A ∩ B')
= P(A) - P(A ∩ B)
= P(A) – {P(A) x P(B)} [vide (3a)]
= P(A){1 – P(B)}
= P(A) x P(B')
= RHS of (3b).
Hence, (3b) is proved. Answer 1
Part 1 sub-part (b)
Given P(A ∩ B) = P(A) x P(B), .............................................................................................. (4a)
to show P(A' ∩ B') = P(A') x P(B') ......................................................................................... (4b)
Now, vide (2), LHS of (4b)
P(A' ∩ B')
= 1 - P(A ∪ B)
= 1 – {P(A) + P(B) - P(A ∩ B)} [vide (2b)]
= 1 – {P(A) + P(B) - P(A) x P(B)} [vide (4a)]
= {1 – P(A)} + P(B){1 - P(A)}
= {1 – P(A)}{1 - P(B)}
= P(A') x P(B')
= RHS of (4b).
Hence, (4b) is proved. Answer 2
Part 2 sub-part (a)
Given P(A ∩ B') = P(A) x P(B'), .............................................................................................. (5a)
to show P(A ∩ B) = P(A) x P(B)......................................................................................... (5b)
Now, vide (1), LHS of (5b)
P(A ∩ B)
= P(A) - P(A ∩ B')
= P(A) – {P(A) x P(B')} [vide (5a)]
= P(A){1 – P(B')}
= P(A) x P(B)
= RHS of (5b).
Hence, (5b) is proved. Answer 3
Part 2 sub-part (b)
Given P(A' ∩ B') = P(A') x P(B'), .............................................................................................. (6a)
to show P(A ∩ B) = P(A) x P(B)......................................................................................... (6b)
Now,
Vide (2),
P(A' ∩ B') = 1 - P(A ∪ B)
= 1 – { P(A) + P(B) - P(A ∩ B)} [vide (2b)]
= {1 – P(A)} + P(B) - P(A ∩ B)
= P(A') + P(B) - P(A ∩ B)............................................................................................ (6c)
(6c) and (6a) =>
P(A') x P(B') = P(A') + P(B) - P(A ∩ B)
Or, P(A ∩ B) = P(A') + P(B) – { P(A') x P(B')}
= P(A'){1 - P(B')} + P(B)
= {P(A') x P(B)} + P(B)
= P(B){1 - P(A')}
= P(B) x P(A)
Hence, (6b) is proved. Answer 4
DONE