In: Statistics and Probability
A study investigated survival rates for in-hospital patients who suffered cardiac arrest. Among 58,593 patients who had a cardiac arrest during the day, 11,604 survived. Among 28.155 patients who suffered cardiac arrest at night, 4139 survived. Use a 0.01 significance level to test the claim that the survival rates are the same for day and night.
Ho:   p1 - p2 =   0  
   
Ha:   p1 - p2 ╪   0  
   
two tail
          
   
sample #1   ----->  day  
first sample size,     n1=  
58593      
number of successes, sample 1 =     x1=  
11604      
proportion success of sample 1 , p̂1=  
x1/n1=   0.1980      
          
   
sample #2   ----->   night
second sample size,     n2 =   
28155      
number of successes, sample 2 =     x2 =
   4139      
proportion success of sample 1 , p̂ 2=   x2/n2 =
   0.147      
          
   
difference in sample proportions, p̂1 - p̂2 =    
0.1980   -   0.1470   =0.0510
          
   
pooled proportion , p =  
(x1+x2)/(n1+n2)=   0.1815  
   
          
   
std error ,SE =    =SQRT(p*(1-p)*(1/n1+
1/n2)=   0.0028      
Z-statistic = (p̂1 - p̂2)/SE = (  
0.051   /   0.0028   )
=18.2609
          
   
z-critical value , Z* =       
2.5758   [excel formula
=NORMSINV(α/2)]  
p-value =       
0.0000   [excel formula
=2*NORMSDIST(z)]  
decision :    p-value<α,Reject null hypothesis
          
................
level of significance, α =   0.01  
           
Z critical value =   Z α/2 =   
2.576   [excel function: =normsinv(α/2)  
   
          
       
Std error , SE =    SQRT(p̂1 * (1 - p̂1)/n1 + p̂2 *
(1-p̂2)/n2) =     0.0027  
       
margin of error , E = Z*SE =    2.576  
*   0.0027   =  
0.0069
          
       
confidence interval is       
           
lower limit = (p̂1 - p̂2) - E =    0.051  
-   0.0069   =   0.0441
upper limit = (p̂1 - p̂2) + E =    0.051  
+   0.0069   =   0.0579
          
       
so, confidence interval is (   0.0441  
< p1 - p2 <   0.0579  
)  
...........................
THANKS
revert back for doubt
please upvote