Question

In: Physics

The angular momentum of a freely rotating disk around its center is L_disk. You toss a...

The angular momentum of a freely rotating disk around its center is Ldisk. You toss a heavy block horizontally onto the disk at two different orientations, but with the same speed, as shown in the figure. Friction acts between the disk and the block so that eventually the block is at rest on the disk and rotates with it. Top View Top View Case A 1) in which case is the magnitude of the final angular momentum of the disk-block system the greatest? Case A Case B Same for both

The angular momentum of a freely rotating disk around its center is L_disk. You toss a heavy block horizontally onto the disk at two different orientations, but with the same speed, as shown in the figure. Friction acts between the disk and the block so that eventually the block is at rest on the disk and rotates with it. 

In which case is the magnitude of the final angular momentum of the disk-block system the greatest? 
 Case A 
 Case B 
 Same for both

Solutions

Expert Solution


Related Solutions

A uniform disk of mass M is rotating freely about its center On its rim lie...
A uniform disk of mass M is rotating freely about its center On its rim lie a cockroach of mass M/3 Initially the cockroach and disk rotate together with an angular velocity of 2.5 rad/s Then the cockroach walks halfway to the center of the disk. What is the new angular velocity of the system?
Conservation of Angular Momentum Lab Worksheet Introduction A non-rotating ring is dropped onto a rotating disk....
Conservation of Angular Momentum Lab Worksheet Introduction A non-rotating ring is dropped onto a rotating disk. The angular speed is measured (by the Rotary Motion Sensor) immediately before the drop and immediately after the ring stops sliding on the disk. The initial angular momentum is compared to the final angular momentum, and the initial kinetic energy is compared to the final kinetic energy. Theory: When the ring is dropped onto the rotating disk, there is no net external torque on...
A uniform disk of mass M and radius R is initially rotating freely about its central...
A uniform disk of mass M and radius R is initially rotating freely about its central axis with an angular speed of w, and a piece of clay of mass m is thrown toward the rim of the disk with a velocity v, tangent to the rim of the disk as shown. The clay sticks to the rim of the disk, and the disk stops rotating. What is the magnitude of the total angular momentum of the clay-disk system before...
A copper disk at 850 degrees celsius rotating about its axis with an angular speed of...
A copper disk at 850 degrees celsius rotating about its axis with an angular speed of 25 rad/s in the outer space. As the disk radiates infrared light, its temperature falls to 20 degrees celsius. No external torque acts on the disk. Does the angular speed of the disk change as it cools?
a) What is the angular momentum of the Moon around the Earth? The Moon mass is...
a) What is the angular momentum of the Moon around the Earth? The Moon mass is 7.40e22 kg and it orbits 3.80e8 meters from the Earth. b) And what is the angular momentum of the Earth around the Sun? Mass of the Earth is 5.98e24 kg and it orbits 1.50el 1 m from the Sun.
A potter's wheel is rotating around a vertical axis through its center at a frequency of...
A potter's wheel is rotating around a vertical axis through its center at a frequency of 1.7 rev/s. The wheel can be considered a uniform disk of mass 5.0 kg and a diameter of 0.32 m. The potter then throws a 2.8-kg chunk of clay, approximately shaped as a flat disk of radius 8.0 cm, onto the center of the rotating wheel. What is the frequency of the wheel after the clay sticks to it? Ignore friction.
A potter's wheel is rotating around a vertical axis through its center at a frequency of...
A potter's wheel is rotating around a vertical axis through its center at a frequency of 1.6 rev/s . The wheel can be considered a uniform disk of mass 6.0 kg and diameter 0.50 m . The potter then throws a 2.2-kg chunk of clay, approximately shaped as a flat disk of radius 7.1 cm , onto the center of the rotating wheel. Part A What is the frequency of the wheel after the clay sticks to it?
A potter's wheel—a thick stone disk of radius 0.500 m and mass 125 kg—is freely rotating...
A potter's wheel—a thick stone disk of radius 0.500 m and mass 125 kg—is freely rotating at 50.0 rev/min. The potter can stop the wheel in 6.00 s by pressing a wet rag against the rim and exerting a radially inward force of 72.0 N. Find the effective coefficient of kinetic friction between the wheel and rag.
what is the physics’s Explanation for the reason of rotating the winds counterclockwise around the center...
what is the physics’s Explanation for the reason of rotating the winds counterclockwise around the center in the Low-pressure area at northern hemisphere ? please clear font
A disk-shaped merry-go-round of radius 2.63 m and mass 155 kg rotates freely with an angular...
A disk-shaped merry-go-round of radius 2.63 m and mass 155 kg rotates freely with an angular speed of 0.570 rev/s. A 59.4-kg person running tangential to the rim of the merry-go-round at 3.82 m/s jumps onto its rim and holds on. Before jumping on the merry-go-round, the person was moving in the same direction as the merry-go-round's rim. (a) Does the kinetic energy of the system increase, decrease, or stay the same when the person jumps on the merry-go-round? (b)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT