Question

In: Math

Show complete solution 1. Show that the lines ?/1 = y+3/ 2 = z+1/3 and x-3/2...

Show complete solution

1. Show that the lines ?/1 = y+3/ 2 = z+1/3 and x-3/2 = y/1 = z-1/-1 intersect by finding their point of intersection. Find the equation of the plane determined by these lines. Find parametric equations for the line that is perpendicular to the two lines and passes through their point of intersection.

Solutions

Expert Solution


Related Solutions

Find the point of intersection of the lines (x-2)/- 3 = (y-2)/6 = z-3 & (x-3)/2...
Find the point of intersection of the lines (x-2)/- 3 = (y-2)/6 = z-3 & (x-3)/2 = y+5 = (z+2)/4. Write the answer as (a, b, c). If they are not cut, write: NO
Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x,...
Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x, y, z) = (4, -3, 5) + s(5, 1, -1) a) determine a vector equation for the plane that combines the two lines b) parametric equations of the plane that contains the two lines c) Cartesian equation of the plane that contains the two lines
1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2...
1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2 1B) Use the Divergence Theorem to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2
Velocity field for this system is: V=[X^2-(y*z^1/2/t)]i-[z*y^3+(x^1/3*z^2/t^1/2)j+[-x^1/3*t^2/z*y^1/2]k find the components of acceleration for the system.
Velocity field for this system is: V=[X^2-(y*z^1/2/t)]i-[z*y^3+(x^1/3*z^2/t^1/2)j+[-x^1/3*t^2/z*y^1/2]k find the components of acceleration for the system.
find the general solution of the equation using cauchy euler. show complete solution x^2 y" -...
find the general solution of the equation using cauchy euler. show complete solution x^2 y" - 3xy' + 3y = 2x^4 e^x
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z):...
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=c}. (b) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): x=a}. (c) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): y=b}. *(2) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=kx+b} assuming both b and k are positive. (a) For what value of...
Suppose X and Y are independent variables and X~ Bernoulli(1/2) and Y~ Bernoulli(1/3) and Z=X+Y A-...
Suppose X and Y are independent variables and X~ Bernoulli(1/2) and Y~ Bernoulli(1/3) and Z=X+Y A- find the joint probability table B- find the probility distribution table of Z C- find E(X+Y) D- find E(XY) E- find Cov(X, Y)
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Let F(x, y, z) = z tan^−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the...
Let F(x, y, z) = z tan^−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 29 that lies above the plane z = 4 and is oriented upward.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT