In: Math
A diet doctor claims Australians are, on average, overweight by more than 10kg. To test this claim, a random sample of 100 Australians were weighed, and the difference between their actual weight and their ideal weight was calculated and recorded.
The data are contained in the Excel file Weights.xlsx.
Use these data to test the doctor's claim at the 5% level of significance.
Excess weight (Kgs) |
16.0 |
4.0 |
4.0 |
4.5 |
11.0 |
7.0 |
7.0 |
16.5 |
14.5 |
5.5 |
16.5 |
0.5 |
13.5 |
26.0 |
28.0 |
31.5 |
14.0 |
25.0 |
14.5 |
1.0 |
2.5 |
4.0 |
17.5 |
6.0 |
5.0 |
4.5 |
10.0 |
11.0 |
8.0 |
0.5 |
4.5 |
10.5 |
31.0 |
23.0 |
11.5 |
10.0 |
10.0 |
22.5 |
4.0 |
12.5 |
29.5 |
23.5 |
10.5 |
10.5 |
10.0 |
12.5 |
21.5 |
5.0 |
5.0 |
20.0 |
15.0 |
15.0 |
25.0 |
15.0 |
11.0 |
28.5 |
14.0 |
24.5 |
20.0 |
7.5 |
1.5 |
5.5 |
9.5 |
3.0 |
8.5 |
4.0 |
5.5 |
8.5 |
17.0 |
13.0 |
20.5 |
23.0 |
18.5 |
16.5 |
6.5 |
5.0 |
16.5 |
5.0 |
9.0 |
15.0 |
21.0 |
9.0 |
24.0 |
8.0 |
9.0 |
6.5 |
23.0 |
7.5 |
14.5 |
15.5 |
0.5 |
10.0 |
23.0 |
21.0 |
7.5 |
15.0 |
10.5 |
8.5 |
16.5 |
17.0 |
Question 10
(Part B)
In this question, we let μ represent
a. |
the population mean 12.7 |
|
b. |
the population average ideal weight of Australians |
|
c. |
the population average actual weight of Australians |
|
d. |
the population average of difference between the actual and ideal weights |
|
e. |
None of the above |
Question 11
(Part B)
The null hypothesis is
a. |
H0: μ > 10 |
|
b. |
H0: μ = 10 |
|
c. |
H0: μ = 12.7 |
|
d. |
H0: μ < 12.7 |
|
e. |
None of the above |
Question 12
(Part B)
The alternative hypothesis is
a. |
HA: μ > 10 |
|
b. |
HA: μ < 12.7 |
|
c. |
HA: μ ≠ 10 |
|
d. |
HA: μ ≠ 12.7 |
|
e. |
None of the above |
Question 13
(Part B)
The value of the t-statistic is
a. |
–3.527 |
|
b. |
0.3527 |
|
c. |
3.527 |
|
d. |
–0.275 |
|
e. |
None of the above |
Question 14
(Part B)
The decision rule is
a. |
reject HA if t > 1.984 |
|
b. |
reject H0 if t > 1.984 |
|
c. |
reject H0 if t < 1.660 |
|
d. |
reject H0 if t > 1.660 |
|
e. |
None of the above |
Question 15
(Part B)
The p-value is
a. |
1.660 |
|
b. |
0.05 |
|
c. |
0.0003 |
|
d. |
0.0070 |
|
e. |
None of the above |
Values ( X ) | Σ ( Xi- X̅ )2 | |
16 | 10.7912 | |
4 | 75.9512 | |
4 | 75.9512 | |
4.5 | 67.4862 | |
11 | 2.9412 | |
7 | 32.6612 | |
7 | 32.6612 | |
16.5 | 14.3262 | |
14.5 | 3.1862 | |
5.5 | 52.0562 | |
16.5 | 14.3262 | |
0.5 | 149.2062 | |
13.5 | 0.6162 | |
26 | 176.4912 | |
28 | 233.6312 | |
31.5 | 352.8762 | |
14 | 1.6512 | |
25 | 150.9212 | |
14.5 | 3.1862 | |
1 | 137.2412 | |
2.5 | 104.3462 | |
4 | 75.9512 | |
17.5 | 22.8962 | |
6 | 45.0912 | |
5 | 59.5212 | |
4.5 | 67.4862 | |
10 | 7.3712 | |
11 | 2.9412 | |
8 | 22.2312 | |
0.5 | 149.2062 | |
4.5 | 67.4862 | |
10.5 | 4.9062 | |
31 | 334.3412 | |
23 | 105.7812 | |
11.5 | 1.4762 | |
10 | 7.3712 | |
10 | 7.3712 | |
22.5 | 95.7462 | |
4 | 75.9512 | |
12.5 | 0.0462 | |
29.5 | 281.7362 | |
23.5 | 116.3162 | |
10.5 | 4.9062 | |
10.5 | 4.9062 | |
10 | 7.3712 | |
12.5 | 0.0462 | |
21.5 | 77.1762 | |
5 | 59.5212 | |
5 | 59.5212 | |
20 | 53.0712 | |
15 | 5.2212 | |
15 | 5.2212 | |
25 | 150.9212 | |
15 | 5.2212 | |
11 | 2.9412 | |
28.5 | 249.1662 | |
14 | 1.6512 | |
24.5 | 138.8862 | |
20 | 53.0712 | |
7.5 | 27.1962 | |
1.5 | 125.7762 | |
5.5 | 52.0562 | |
9.5 | 10.3362 | |
3 | 94.3812 | |
8.5 | 17.7662 | |
4 | 75.9512 | |
5.5 | 52.0562 | |
8.5 | 17.7662 | |
17 | 18.3612 | |
13 | 0.0812 | |
20.5 | 60.6062 | |
23 | 105.7812 | |
18.5 | 33.4662 | |
16.5 | 14.3262 | |
6.5 | 38.6262 | |
5 | 59.5212 | |
16.5 | 14.3262 | |
5 | 59.5212 | |
9 | 13.8012 | |
15 | 5.2212 | |
21 | 68.6412 | |
9 | 13.8012 | |
24 | 127.3512 | |
8 | 22.2312 | |
9 | 13.8012 | |
6.5 | 38.6262 | |
23 | 105.7812 | |
7.5 | 27.1962 | |
14.5 | 3.1862 | |
15.5 | 7.7562 | |
0.5 | 149.2062 | |
10 | 7.3712 | |
23 | 105.7812 | |
21 | 68.6412 | |
7.5 | 27.1962 | |
15 | 5.2212 | |
10.5 | 4.9062 | |
8.5 | 17.7662 | |
16.5 | 14.3262 | |
17 | 18.3612 | |
Total | 1271.5 | 5866.625 |
Mean X̅ = Σ Xi / n
X̅ = 1271.5 / 100 = 12.715
Sample Standard deviation SX = √ ( (Xi - X̅ )2 / n - 1
)
SX = √ ( 5866.625 / 100 -1 ) = 7.698
Question 10
a. |
the population mean 12.7 |
Question 11
b. |
H0: μ = 10 |
Question 12
a. |
HA: μ > 10 |
Question 13
Test Statistic :-
t = ( X̅ - µ ) / (S / √(n) )
t = ( 12.715 - 10 ) / ( 7.698 / √(100) )
t = 3.5269
c. |
3.527 |
Question 14
Test Criteria :-
Reject null hypothesis if t > t(α, n-1)
t(α, n-1) = t(0.05 , 100-1) = 1.66
t > t(α, n-1) = 3.5269 > 1.66
Result :- Reject null hypothesis
d. |
reject H0 if t > 1.660 |
Question 15
P - value = P ( t > 3.5269 ) = 0.0003
Looking for the value t = 3.257 in t table across n - 1 = 100 - 1 =
99 degree of freedom.
c. |
0.0003 |