Question

In: Chemistry

A typical seven passenger minivan has a mass of 3.00 x 10^3?3?? kg and can accelerate...

A typical seven passenger minivan has a mass of 3.00 x 10^3?3?? kg and can accelerate from 0.0-60.0 mph in 12 s using energy from the combustion of octane (about 30.0% efficient). Calculate the mass of CO_2?2??(g) emissions released during this 12 s acceleration. (Assume the total energy of the minivan is kinetic energy. \Delta?H^o_{rxn}?rxn?o?? of octane = –5074.1 kJ).

Solutions

Expert Solution


Related Solutions

8) 3 kg mass moving with 10 m/s in the x-direction hits a 5 kg mass...
8) 3 kg mass moving with 10 m/s in the x-direction hits a 5 kg mass at rest. After the collision 3 kg is deflected by 30 degree while the 5 kg is deflected by 45 degrees. a) Draw a diagram for the initial and final motion including the directions of the velocities b) Find the final velocities of each mass c) Determine if the collision is elastic or not. d) Qualitatively, show the direction of the impulse (or the...
Halley’s comet has a mass of 3 x 10 14 kg, and when at its closest...
Halley’s comet has a mass of 3 x 10 14 kg, and when at its closest approach to the sun (8.79 x 10 7 km) is moving at a speed of 55 km/s. What then will be the comet's speed when it is passing Earth’s orbit?
One particle has a mass of 3.84 x 10-3 kg and a charge of +8.90 μC....
One particle has a mass of 3.84 x 10-3 kg and a charge of +8.90 μC. A second particle has a mass of 8.33 x 10-3 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.158 m, the speed of the 3.84 x 10-3 kg-particle is 190 m/s. Find the initial separation between the particles.
Blocks A (mass 3.00 kg) and B (mass 12.00 kg, to the right of A) move...
Blocks A (mass 3.00 kg) and B (mass 12.00 kg, to the right of A) move on a frictionless, horizontal surface. Initially, block B is moving to the left at 0.500 m/s and block A is moving to the right at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is head on, so all motion before and after it is along a straight line. Let +x be the direction of the initial motion of A. Find...
A bullet with the mass of 2.5 x 10^-3 kg is shot from a gun with...
A bullet with the mass of 2.5 x 10^-3 kg is shot from a gun with a velocity of 1.2 x 10^2 m/s. (momemtum/impulse problem) a. What is the impulse applied to the bullet (magnitude and direction)? b. what is the reaction impulse felt by the gun magnitude and direction)?
An object with mass m1= 3.00 kg is moving along the positive x-axis with a speed...
An object with mass m1= 3.00 kg is moving along the positive x-axis with a speed v1i=2 m/s straight towards two objects with masses m2= 2.00 kg and m3= 4.00 kg, which are initially at rest. When they collide, object 1 comes to rest and object 2 moves away with a speed of v2f=1.5 m/s at an angle of 50o from the incoming path of object 1. For everything that follows, use a coordinate system where the final path of...
A car of a roller coaster has a total mass of 1000 kg including the passenger....
A car of a roller coaster has a total mass of 1000 kg including the passenger. At position A (the top of the first incline), it cruises at 2m/s. Calculate its velocity at position C at the top of the second incline which is 5 m below the top of the first incline, if there are no losses due to friction on the track or air drag. Calculate the average resistance force (due to friction and drag) between points A...
A sports car of mass 1000 kg can accelerate from rest to 72. km/h in 6.6...
A sports car of mass 1000 kg can accelerate from rest to 72. km/h in 6.6 s. a) What would the average force of the car's engine be? b) If the same force acts on 2000 kg car what is the acceleration.
Two balls collide elastically. Ball A has a mass of 3.00 kg and moves to the...
Two balls collide elastically. Ball A has a mass of 3.00 kg and moves to the right at 2.00 m/s. Ball B has a mass of 1.29 kg, and moves to the left, also at 2.00 m/s.The balls collide head-on. 1) Find the speed of Ball A after the collision. 2) Find the speed of Ball B after the collision. 3) Find the impulse delivered to Ball A during the collision. 4)Find the impulse delivered to Ball B during the...
Two balls collide elastically. Ball A has a mass of 3.00 kg and moves to the...
Two balls collide elastically. Ball A has a mass of 3.00 kg and moves to the right at 2.00 m/s. Ball B has a mass of 1.29 kg, and moves to the left, also at 2.00 m/s. The balls collide head-on. A) Find the speed of Ball A after the collision. B) Find the speed of Ball B after the collision. C) Find the impulse delivered to Ball A during the collision. D) Find the impulse delivered to Ball B...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT